Multi-Hazard Mitigation Plan Update 2016
City of Somersworth, NH

Adopted 2004
Updated February 3, 2011
Updated June 17, 2016

Submitted to the New Hampshire Homeland Security & Emergency Management
By the
City of Somersworth, NH
with Strafford Regional Planning Commission

This project was funded from the fiscal year 2014 Pre-Disaster Mitigation Competitive (PDMC) Grant Program, which was awarded to the Department of Safety, Division of Homeland Security and Emergency Management (HSEM) from the Federal Emergency Management Agency (FEMA).

Cover: Salmon Falls Road, Somersworth, NH – 2007 Mother’s Day Flooding Event
Photo credit: Strafford Regional Planning Commission
Multi-Hazard Mitigation Plan Update 2016
City of Somersworth, New Hampshire

Acknowledgements

This plan was created through a grant from New Hampshire Homeland Security Emergency Management (HSEM).

The following organizations have contributed invaluable assistance and support for this project:

The 2004 and 2010 Somersworth Hazard Mitigation Committee’s
New Hampshire Homeland Security Emergency Management (HSEM)
City of Somersworth

The 2016 City of Somersworth Multi-Hazard Mitigation Planning Team

Fifteen people have attended meetings and/or been instrumental in completing this plan:

- Keith Hoyle Emergency Management Director, City of Somersworth
- John “Andy” Lucier Facilities Director, City of Somersworth
- Paul Robidas General Manager for American Ambulance, Subcontractor w/ the City
- Scott Smith Director of Finance, City of Somersworth
- Mike Bobinksy Director of Public Works and Utilities, City of Somersworth
- Russ Timmons Captain of Police, City of Somersworth
- Robert M. Belmore City Manager, City of Somersworth
- Dean Crombie Chief of Police, City of Somersworth
- Dave Sharples City Planner, City of Somersworth
- Deborah Evans Director of Housing Authority, City of Somersworth
- Tim McLin Lieutenant Police Department, City of Somersworth
- Jeni Mosca Superintendent of Schools – SAU 56, City of Somersworth
- Elizabeth Peck State Hazard Mitigation Officer, HSEM
- Parker Moore State Hazard Mitigation Planner, HSEM
- Kyle Pimental Principal Planner, SRPC

Plan Prepared and Authored By
Kyle Pimental, Principal Planner
Strafford Regional Planning Commission
150 Wakefield Street, Suite 12
Rochester, NH 03867
603-994-3500
www.strafford.org

Date of Conditional Approval from FEMA: May 13, 2016
Date of Adoption by City: June 6, 2016
Date of Final Approval from FEMA: June 17, 2016
Executive Summary ... 5

Chapter I: Multi-Hazard Planning Process .. 7
Authority ... 7
Purpose & History of the FEMA Mitigation Planning Process ... 7
Jurisdiction .. 8
Scope of Plan ... 8
Multi-Hazard Planning Process .. 8
Public Involvement ... 9
Narrative Description of the Process and Methodology ... 10

Chapter II: Hazard Identification and Analysis .. 16
Hazard Analysis .. 16
Rating Probability, Severity, and Overall Risk of Future Disasters .. 20
Hazard Ratings in Somersworth, NH ... 21
Description of Hazards .. 23
National Flood Insurance Program (NFIP) ... 42
Somersworth Flood Insurance Program (NFIP) Status .. 42

Chapter III: History and Demographics .. 44
Introduction .. 44
Historical Population Growth .. 44
Project Population Change .. 45
Migration ... 45
Aging ... 45
Population and Age ... 45
Housing ... 46

Chapter IV: Critical Infrastructure & Key Resources (CI/KR) .. 48

Chapter V: Multi-Hazard Effects in Somersworth ... 53
Identifying Vulnerable Structures ... 53
Calculating Potential Loss ... 55

Chapter VI: Multi-Hazard Goals and Existing Mitigation Strategies .. 60
All Hazard Mitigation Goals .. 60
Types of Mitigation Strategies Developed .. 61
Gaps in Existing Measures .. 61
Summary of Recommended Improvements .. 61
Existing Protection Matrix .. 61
Chapter VII: Prior Mitigation Plan(s) ..67
Dates(s) of Prior Plan(s) ..67

Chapter VIII: New Mitigation Strategies and STAPLEE ...69
Feasibility and Prioritization ...69
The Team’s Understanding of Multi-Hazard Mitigation Strategies ...70

Chapter IX: Implementation Schedule for Prioritized Strategies ...74

Chapter X: Monitoring, Evaluation, and Updating the Plan ..78
Introduction ...78
Multi-Hazard Plan Monitoring, Evaluation, and Updates ...78
Integration with Other Plans ..78

Chapter XI: Signed Community Documents and Approval Letters80
Conditional Approval Letter from FEMA ...80
Signed Certificate of Adoption ..81
Final Approval Letter from FEMA ..82

Appendices ..83
Appendix A: Bibliography ...84
Appendix B: Planning Process Documentation ...85
Appendix C: Summary of Possible Multi-Hazard Mitigation Strategies ...93
Appendix D: List of Contacts ...103
Appendix E: Technical and Financial Assistance for Multi-Hazard Mitigation104
Appendix F: Maps ..106
Multi-Hazard Mitigation Plan Update 2016
City of Somersworth, New Hampshire

Executive Summary

This Plan was revised and updated to meet statutory requirements and to assist the City of Somersworth in reducing and mitigating future losses from natural and man-made hazardous events. An initial edition of this Plan was developed and presented to FEMA in 2004. The plan was revised in 2010, and was updated in 2016 to reflect the most recent information obtained through the evolution of the hazard mitigation program at the State. This update was developed by Strafford Regional Planning Commission (SRPC) and participants from the Multi-Hazard Mitigation Planning Team, which was made up by the Emergency Management Director, City Manager, Chief of Police, Director of Development Services, Director of Housing Authority, Lt. Somersworth Police, and Superintendent of Schools. The Plan references historical events, as well as identifies specific vulnerabilities that are likely to impact the City.

This plan addresses the following hazards that affect the City:

- Flooding
- Ice Jam
- Dam Failure
- Drought
- Extreme Temperatures
- Wildfire
- Earthquake
- Landslide
- Tornado & Downburst
- Hurricane & Tropical Storms
- Severe Thunderstorms
- Severe Winter Weather
- Hazardous Materials
- Public Health Threats

This plan also provides an updated list of Critical Infrastructure and Key Resources (CI/KR) categorized as follows: Emergency Response Services (ERS), Non-Emergency Response Facilities (NERS), Facilities and Populations to Protect (FPP) and Potential Resources (PR). In addition, this plan addresses the City’s involvement in The National Flood Insurance Program (NFIP).

The revision process included reviewing other City Hazard Plans, technical manuals, federal and state laws, the State Hazard Mitigation Plan, research data, and other available mitigation documents from multiple sources. Combining elements from these sources, the Team was able to produce this integrated multi-hazards plan and recognizes that such a plan must be considered a work in progress. In addition to periodic reviews there are three specific situations, which require a formal review of the plan. The plan will be reviewed:

- **Annually** to assess whether the existing and suggested mitigation strategies have been successful and remain current in light of any changes in federal state and local regulations and statutes. This review will address the Plan’s effectiveness, accuracy and completeness in regard to the implementation strategy. The review will address any recommended improvements to the Plan, and address any weaknesses identified that the Plan did not adequately address. This report will be filed with the City Council.
Every Five Years the Plan will be thoroughly reviewed, revised and updated using the same criteria outlined above. At that time it is expected to be thoroughly reviewed and updated as necessary. The public will be allowed and encouraged to participate in that five year revision process.

After any declared emergency event, the EMD using the same criteria outlined above.

If the City adopts any major modifications to its land use planning documents, the jurisdiction will conduct a Plan review and make changes as applicable.

Public involvement is encouraged throughout this process and will continue to be stressed in future revisions. In the pre-meeting, City officials were given a recommended list of people to invite and participate in the process. A press release was issued which encouraged public involvement and it was also stressed that public attendance was recommended. The City of Somersworth received conditional approval on May 13, 2016. A public meeting was held and the plan was adopted by the City Council on June 6, 2016. The Plan received formal approval from FEMA on June 17, 2016. The public will have the opportunity for future involvement as the Plan will be periodically reviewed and the public will be invited to participate in all future reviews and updates to this plan. Public notice was and will be given by such means as: press releases in local papers, posting meeting information on the City website, sending letters to federal, state, and local organizations impacted by the Plan, and posting notices in public places in the City, on the SRPC website and noticed to the County commission. There will also be a public meeting before each formal review and before any change/update is sent to FEMA.

Once final approval by FEMA has been received, copies of the Plan will be distributed to the relevant City Departments and personnel, HSEM, and FEMA and other state and local governmental entities; the Plan will then be distributed by these entities per requirements. Copies of the Plan will remain on file at the Strafford Regional Planning Commission (SRPC) in both digital and paper format.
Chapter I: Multi-Hazard Planning Process

Authority

Somersworth’s original Plan was prepared pursuant to Section 322, Mitigation Planning, of the Robert T. Stafford Disaster Relief and Emergency Assistance Act (the Act), herein enacted by Section 104 of the Disaster Mitigation Act of 2000 (DMA) (P.L. 106-390). This Act provides new and revitalized approaches to mitigation planning. Section 322 of DMA 2000 emphasizes the need for State, local and tribal entities to closely coordinate mitigation planning and implementation efforts. This revised multi-hazard plan will be referred to as the “Plan”. Somersworth’s Plan has been prepared by the Multi-Hazard Mitigation Planning Team with the assistance and professional services of Strafford Regional Planning Commission (SRPC) under contract with New Hampshire Homeland Security Emergency Management (HSEM) operating under the guidance of Section 206.405 of 44 CFR Chapter 1 (10-1-2010 Edition). This plan is funded, in part, by HSEM through grants from FEMA (Federal Emergency Management Agency). Funds from city dues and matching funds for team member’s time are also part of the funding formula.

Purpose & History of the FEMA Mitigation Planning Process

The ultimate purpose of Disaster Mitigation Act of 2000 (DMA) is to:

- “establish a national disaster hazard mitigation program –
- Reduce the loss of life and property, human suffering, economic disruption and disaster assistance costs resulting from natural disasters; and
- Provide a source of pre-disaster hazard mitigation funding that will assist States and local governments (including Indian tribes) in implementing effective hazard mitigation measures that are designed to ensure the continued functionality of critical services and facilities after a natural disaster.”

DMA 2000 amends the Robert T. Stafford Disaster Relief and Emergency Assistance Act by, among other things, adding a new section “322 – Mitigation Planning” which states:

“As a condition of a receipt of an increased Federal share for hazard mitigation measures under subsection (e), a State, local, or tribal government shall develop and submit for approval to the President a mitigation plan that outlines processes for identifying the natural hazards, risks, and vulnerabilities of the area under the jurisdiction of the government.”

HSEM’s goal is to have all New Hampshire communities complete a local multi-hazard plan as a means to reduce future losses from natural and man-made events before, during, or after they occur. HSEM has outlined a process whereby communities throughout the state may become eligible for grants and other assistance upon completion of this multi-hazard plan. The state’s regional planning commissions are charged with providing assistance to selected communities to help develop local plans.
Multi-Hazard Mitigation Plan Update 2016
City of Somersworth, New Hampshire

Somersworth’s Multi-Hazard Mitigation Plan is a planning tool for reducing future losses from natural and man-made disasters as required by the Disaster Mitigation Act of 2000; this plan will be adopted but kept separate from the city’s master plan. The Multi-Hazard Mitigation planning process results in significant cross talk regarding all types of natural and man-made hazards by team members.

The DMA places new emphasis on local mitigation planning. It requires local jurisdiction must have a FEMA approved Hazard Mitigation Plan as a condition for receiving all hazard mitigation grants and some other federal grants. Local governments must review the plan yearly and update their plans every five years to continue program eligibility.

Jurisdiction

This plan addresses only one jurisdiction – the City of Somersworth, NH. Once approved by the Planning Team, the Plan will be forwarded to HSEM and FEMA for Conditional Approval. Upon review and conditional approval by HSEM and FEMA, the City Council will hold a public meeting, to consider public comments and must promulgate a signed Resolution to Adopt the Plan.

Scope of Plan

A community’s multi-hazard mitigation plan often identifies a vast number of natural hazards and is somewhat broad in scope and outline. The scope and effects of this plan were assessed based on the impact of hazards on: Critical Infrastructure and Key Resources (CI/KR); current residential buildings; other structures within the City; future development; administrative, technical and physical capacity of emergency response services; and response coordination between federal, state and local entities.

Multi-Hazard Planning Process

The planning process consists of ten specific steps. Many factors affect the ultimate sequence of the planning process: length of meetings, community preparation and attendance, and other community needs. All steps are included but not necessarily in the numerical sequence listed.

The steps are:

1. Establish and Orient a Hazard Mitigation Planning Team
2. Identify Past and Potential Hazards
3. Identify Hazards and Critical Facilities
5. Analyze Development Trends
6. Review Existing Mitigation Strategies and Proposed Improvements
7. Develop Specific Mitigation Measures
8. Prioritize Mitigation Measures
9. Develop Mitigation Action Plan
10. Adopt and Implement the Plan
Public Involvement

The Public, Neighboring Communities, Agencies, Non-profits, and other interested parties

Public involvement has been and continues to be stressed starting with the initial meeting; community officials were given a list of potential team members before the first review meetings were held. These included the city council, administrative staff, the conservation commission, the planning board, the police department, the fire department, and the highway department. Local business owners, interested organizations, and residents of Somersworth were also invited to participate. Community officials were urged to contact as many people as they could to participate in the planning process. A public notice, stressing the public nature of the process, was sent to Fosters newspaper, posted on the Strafford Regional Planning Commission website, the City’s website, and notices were hung at the City Hall. The neighboring communities of Rochester, Dover, Rollinsford, and Berwick (ME) all had the opportunity to participate as each planning meeting was open to the public. There was no participation from surrounding communities. There was participation from one member of the business community, who is currently the General Manager for American Ambulance Service of New England (AANE). AANE is the Emergency Medical Services provider for the City of Somersworth, as well as the Towns of Berwick, Eliot, and Kittery Maine. AANR also contracts with multiple seacoast hospitals and skilled nursing facilities. There was no other public participation in the plan update process. All feedback from participants of the planning committee was incorporated into the Plan.

Public Announcement
City of Somersworth Multi-Hazards Mitigation Planning Update

Strafford Regional Planning Commission has begun the process to update Somersworth’s Multi-Hazard Mitigation Plan and the first meeting with the Hazard Mitigation Planning Committee has been scheduled for October 28th at 10:30AM in the City Hall. The first meeting will include: a review of community impacts from presidentially declared disasters and emergency declarations since the adoption of the previous plan, completion of a vulnerability and risk analysis, specific input about each identified hazard, and feedback on how the City has remained in NFIP compliance.

All citizens, businesses, municipal officials and interested parties are invited. If you are unavailable to attend, please forward any ideas or concerns to: Kyle Pimental, Principal Planner, Strafford Regional Planning Commission at 603-994-3500 or kpimental@strafford.org or to Keith Hoyle, Fire Chief/EMD at 603-692-3131 or khoyle@somersworth.com.

This update of the 2011 Plan is funded by FEMA under contract to Strafford Regional Planning Commission and is a collaborative planning process with the City.
Multi-Hazard Mitigation Plan Update 2016
City of Somersworth, New Hampshire

Narrative Description of the Process and Methodology

The Plan is being developed with substantial local, state and federal coordination; completion of this new multi-hazard plan required significant planning preparation. All meetings are geared to accommodate brainstorming, open discussion and an increased awareness of potential threats to the City.

Meeting 1: October 28th, 2015

Members present: Keith Hoyle (Fire Chief and EMD), Robert Belmore (City Manager), Dean Crombie (Chief of Police), Dave Sharples (Director of Planning & Community Development), Deborah Evans (Director of Housing Authority), Tim McLin (Lt. Somersworth Police), Jeni Mosca (Superintendent of Schools - SAU 56), John (Andy) Lucier (Facilities Director), Paul Robidas (American Ambulance), Scott Smith (Director of Finance), Russ Timmons (Captain Police) and Kyle Pimental (Principal Planner – SRPC).

Principal Planner Pimental gave a brief summary of the statutory requirements and overall purpose of developing municipal hazard mitigation plans. There was a discussion on the update process, projected timeline for completion, responsibilities for both the planning committee and the regional planning commission, and important details on the grant, which included tracking progress through quarterly reporting and documenting in-kind match.

Principal Planner Pimental led a discussion on the recent presidentially declared disasters, as well as emergency declarations (5) from 2011 to the present. The hazard mitigation planning team provided local knowledge and input on the following declarations:

- Tropical Storm Irene (2011) - This storm produced strong winds and rain. The rain was heavy at times. However, there was no major damage experienced within the City. There may have been sporadic power outages and tree limbs down.

- Halloween Snow Event (2011) - This storm was known as the “Halloween Storm”. Due to heavy, wet snow and leaf-on conditions there was sporadic power outages, as well as damage to trees and telephone wires.

- Hurricane Sandy (2012) - During this storm, the Emergency Operations Center was opened and staffed by municipal staff. This storm produced some strong winds and rain. The rain was heavy at times. However, there was no major damage experienced within the City. There may have been sporadic power outages and tree limbs down.

- Blizzard Nemo (2013) - This storm brought heavy snow, however there was no major damage. There may have been some minor power outages for short periods of time. Clean-up and snow removal took more time and resources than smaller storms. The City received $49,278 in disaster relief funding for reimbursement costs for snow removal.
Blizzard Juno (2015) - This storm was much more problematic than the winter storm in 2013. At the time of the event, there was an abundance of snow already on the ground. Snow removal was slower and more costly. Heavy snow also resulted in localized power outages in the downtown along Main Street and Washington Street. The Flanagan Center was open for one night as a warming station; the City Hall was closed. The City is currently awaiting $33,476 in disaster relief funding for reimbursement costs for snow clean-up and removal. The School is currently awaiting $36,340 in disaster relief funding for reimbursement costs for snow clean-up and removal.

The committee also identified one other winter storm, which was not considered a FEMA declaration. The pre-Thanksgiving Day snow event in late November, 2014 resulted in heavy wet snow, which produced scattered power outages across the city for two full days. Along with school closures and some municipal building closures, this storm disrupted many travel plans for the holiday weekend including major delays at airports and hazardous travel by car on local and state roads.

The planning committee worked together to complete the Hazard Vulnerability Assessment Tool in order to determine the overall threat for each hazard. A summary of the results can be found on Table 2.3 in the Plan. The community made revisions to four hazards. They were:

- Updated extreme heat to extreme temperatures to cover both sides of the spectrum
- Combined radon (air/water) with public health threats, including lyme disease, arsenic, etc.
- Deleted geomagnetism due to relevancy
- Updated man-made hazards to encompass hazardous materials from the rail-line and truck traffic

Principle Planner Pimental facilitated a discussion on the descriptions for each hazard and solicited feedback from the committee.

- Flooding – Additional information on flooding along the Salmon Falls Road, Blackwater Road, West High Street, and Maple Street that caused major damage, road closures, and general erosion. During each of these events the wastewater treatment facility was impacted by flooding, which included loss of power and additional equipment (pumps, blowers, generator, etc.), fuel oil loss, and debris carried throughout entire facility. The City has since taken numerous preventative measures and made significant upgrades to the plant, which include: new clear well hatches that are elevated and sealed, a new generator to be self-contained with raised fuel storage, upgrades to storm windows and doors, the propane tanks are strapped to cement pads, and the installation of flood gates for entranceways.

- Ice Jam – The planning committee referenced an ice dam in 1974-1975 that required blasting using dynamite.

- Dam Failure - According to the NHDES Dam Bureau, the Lower Great Falls dam was last inspected on 9/12/2013 by the Federal Energy Regulatory Commission (FERC) with assistance from NHDES. FERC has the primary authority of inspection (FERC's has determined the dam's hazard class as significant) due to the dam's license to produce hydropower. The dam was inspected again in late 2015.
Multi-Hazard Mitigation Plan Update 2016
City of Somersworth, New Hampshire

- Severe Thunderstorms – Other localized events have occurred, including lightning damage to homes and City facilities which caused minor electrical issues. The planning committee discussed past challenges with lightning strikes at the old police station. The City has since installed a more adequate grounding system.

- Wildfire – No additional information was provided

- Severe Winter Weather – Information was provided on both Blizzard Nemo and Juno. The planning committee also added storms in January 2015 and Thanksgiving 2014.

- Earthquake - There was a 4.6 magnitude earthquake that took place centered near Hollis Center, Maine, approximately 21 miles west of Portland on October 16, 2012. According to news reports, the earthquake shook houses in Boston and Connecticut, but it apparently did not cause any injuries or damage. The planning committee discussed that the earthquake was felt locally, but could not recall any major damage or disruption to services.

- Landslide – No additional information was provided

- Drought – No additional information was provided

- Hurricane & Tropical Storms - The last hurricane to hit the region was Hurricane Sandy during the period of October 26 to November 8, 2012. During the storm, the City experienced a number of road closures due to downed trees and other debris. The Emergency Operations Center was opened for emergency responders and municipal staff. Declaration FEMA-4095 requested funds for debris removal and emergency protective measures.

- Hazardous Material – No additional information was provided

- Tornado & Downburst – No additional information was provided

- Extreme Temperatures – No additional information was provided

- Public Health Threats – The committee requested that radon levels from the 2015 water quality report be included in this section. According to the 2015 Water Quality report, Somersworth conducted more than 700 tests for over 175 drinking water compounds. The quality of the City’s water far exceeds the standards set by state and federal regulation.

- Geomagnetism – Was removed as a threat due to relevancy.

Principal Planner Pimental briefly gave a summary of the National Floodplain Insurance Program (NFIP).
Principle Planner Pimental gave a summary of updated population and demographics data developed by SRPC. He asked the committee to review the information and provide comments that indicate any inconsistencies.

The next meeting date was set for Wednesday, December 9th at 11:00AM at City Hall conference room. SRPC will email materials to the planning committee by November 25th to allow ample time for review.

Meeting 2: December 9th, 2015

Members present: Keith Hoyle (Fire Chief and EMD), Robert Belmore (City Manager), Dave Sharple (Director of Planning & Community Development), Deborah Evans (Director of Housing Authority), Tim McLin (Lt. Somersworth Police), Jeni Mosca (Superintendent of Schools - SAU 56), John (Andy) Lucier (Facilities Director), Paul Robidas (American Ambulance), Russ Timmons (Captain Police), Mike Bobinsky (Director of Public Works and Utilities) and Kyle Pimental (Principal Planner – SRPC).

Principal Planner Pimental called the meeting to order and briefly reviewed the October 28th planning committee meeting minutes. There were no major comments or edits.

Principal Planner Pimental reviewed the finalized Hazard Vulnerability Assessment Tool and solicited comments from the committee. There were no major comments or edits.

The planning committee reviewed critical infrastructure and key resources identified in Table's 4.1, 4.2, 4.3, 4.4, and 4.5. Revisions were provided by the planning committee, which included: updates to the type of facility, physical address, and phone number. Additionally, the planning committee agreed that the associated maps should be created in accordance with the tables (five tables = five maps).

SRPC agreed to work with the city’s assessing department to determine the assessed value for each of the identified critical facilities and other structures most likely to be damaged by hazards. By using 100% of the structure value, the planning committee will estimate potential loss.

The planning committee made the decision to use the results derived from the hazard vulnerability assessment tool (Table 2.3) in order to determine potential loss for all structures in Somersworth. There was consensus that the overall threat rankings (severity x probability) associated with each hazard were an equal indicator to the percentage of damage and were therefore used to determine the potential loss.

Next, the planning committee reviewed and updated Tables 6.1 and 7.1. The update included information on existing strategies and proposed improvements, as well as accomplishments since the prior plans approval.

The next meeting date was set for Wednesday, January 13th at 10:30AM at the City Hall. SRPC will email materials to the planning committee by January 6th to allow ample time for review.
Meeting 3: January 13, 2016

Members present: Paul Robidas (American Ambulance), Scott Smith (Director of Finance and Administration), Tim McLin (Lt. Somersworth Police), Deborah Evans (Director of Housing Authority), Jeni Mosca (Superintendent of Schools - SAU 56), Russ Timmons (Captain Police), Dave Sharples (Director of Planning & Community Development), Keith Hoyle (Fire Chief and EMD), Robert Belmore (City Manager), Mike Bobinsky (Director of Public Works and Utilities) and Kyle Pimental (Principal Planner – SRPC).

Principal Planner Pimental called the meeting and moved to number six of the agenda due to time constraints of some of the planning committee members. During this discussion the planning committee brainstormed a new set of mitigation strategies and scored them accordingly using the STAPLEE method. After the evaluation was completed the committee went through the implementation table and finalized responsibilities, timeframe, and potential funding.

Once completed, Principal Planner Pimental moved back to the beginning of the agenda and reviewed the December 9th planning committee meeting minutes. There were a few minor edits submitted. Those edits were made and included into the final version of this plan update.

Principal Planner Pimental reviewed the five potential and past hazards maps in conjunction with the critical facilities and key resources tables. Edits were made to the location of the police station and the pump station on Blackwater Road. Additional facilities were added, which included the two Dover city wells. During the review of the maps, the planning committee identified past flooding areas that impacted the city. Those areas were mapped in GIS and are included in the final map sets. Principal Planner Pimental will work with the city’s assessing department to calculate potential loss for those structures that were within the FEMA and localized flood zones.

The planning committee reviewed all the accomplishments since the adoption of the last plan, which was discussed at the meeting in December. Minor edits were received and included into the final version of the plan.

The next meeting date was set for Wednesday, February 10th at 10:30AM at the City Hall. SRPC will email materials to the planning committee by February 3rd to allow ample time for review.

Meeting 4: February 10, 2016

Members present: Keith Hoyle (Fire Chief and EMD), Jeni Mosca (Superintendent of Schools - SAU 56), John (Andy) Lucier (Facilities Director), Robert Belmore (City Manager), Paul Robidas (American Ambulance), Deborah Evans (Director of Housing Authority), Russ Timmons (Captain Police), Mike Bobinsky (Director of Public Works and Utilities) and Kyle Pimental (Principal Planner – SRPC).

Principal Planner Pimental called the meeting to order and briefly reviewed the January 13th planning committee meeting minutes. There were no major comments or edits.
Principal Planner Pimental reviewed Table 5.1, which identified vulnerable structures within the city. The planning committee corrected minor errors and typos. The committee also stated that some of the assessed values seemed incorrect and should be revisited with the city’s financial department. Principal Planner Pimental agreed to speak with the financial department to double check assessed values.

Next, the planning committee reviewed Table 8.1 and Table 9.1. There were no major comments or edits to these sections.

Finally, the planning committee reviewed all the maps for facility location errors and limits of identified flooding areas. All members had an opportunity to comment and mark up the draft maps before the close of the meeting.

Principal Planner Pimental ended the meeting, stating that he would send the plan to HSEM for review and then on to FEMA Region 1 for conditional approval by the end of the month. He also stated that once the plan receives conditional approval it will need to be adopted by the City Council, and then back to FEMA for final review.
Chapter II: Hazard Identification and Analysis

Hazard Analysis

Somersworth is prone to a variety of man-made and natural hazards. These include: dam failures, riverine and ice jam flooding, severe wind events, wildfire, drought, ice storms and severe winter storms.

Flooding, whether from heavy rains or ice jams, carries the greatest risk for Somersworth. The Salmon Falls River floods occasionally. However, in 2006, 2007 and 2010 the entire coastal region was subjected to severe spring flooding events. The 2006 Mother’s Day flood resulted from record breaking amounts of rainfall in a very short duration. The 2007 Patriot’s Day flood was a combination of heavy rainfall and rapid snowmelt as up to seven inches of rain fell April 16–18 from a storm that stalled off the coast of New England. The peak discharges during this flood event were the highest recorded at five long-term stream gage sites – the New Hampshire Salmon Falls River at Milton (north of Somersworth), Cocheco River near Rochester, Oyster River near Durham, Contoocook River at Peterborough, and South Branch Piscataquog River near Goffstown. In addition, peak discharges equaled or exceeded a 100 year recurrence interval at ten stream gages and a 50 year recurrence interval at 16 stream gages. The most severe flooding occurred in Strafford, Rockingham, Merrimack and Hillsborough Counties.¹ The latest flooding event occurred in March 2010 when two separate storm events occurred in mid and late March.

Severe wind events, hurricane residuals, and downbursts have caused damage to Somersworth. The City is fairly wooded and forested in many areas, which carries the potential for major tree damage from high-wind events. In February 2010 there was severe windstorm that affected trees and power lines. In 2008 there was a tornado that passed through the region to the west and north causing severe damage along its path. In December 2008 there was a record breaking ice storm in New Hampshire that disrupted power and communication services for weeks in some locations as well as extensive damage to infrastructure, trees and property. Somersworth received damage but not to the extent that other locations received.

Table’s 2.1 and 2.2 list all the presidentially declared and emergency declarations from 1990-2015 that have impacted the City.

¹ USGS Scientific Investigations Report 2008-5120
Table 2.1: Presidentially Declared Disasters (DR) 1990-2015 impacting the City of Somersworth

<table>
<thead>
<tr>
<th>Date Declared</th>
<th>Event</th>
<th>Amount/Program/Source</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 9, 1991</td>
<td>Hurricane Bob</td>
<td>$2,293,449 PA</td>
<td>One of the costliest storms to ever hit New England, damages totaling approximately $1.5 billion. There were seventeen reported fatalities and extensive damage as a result of high winds and rough seas. New Hampshire experienced strong winds (Pease reported 60 mph gusts) and widespread flooding due to heavy rains. There were two reported deaths and power outages statewide from downed trees and power lines.</td>
</tr>
<tr>
<td>October 29, 1996</td>
<td>Severe Storms & Flooding</td>
<td>$2,341,273 PA</td>
<td>Fall nor’easter rainstorm that took place on October 20-23. There was significant damage and flooding throughout the region.</td>
</tr>
<tr>
<td>January 15, 1998</td>
<td>Ice Storm</td>
<td>$12,446,202 PA/IA</td>
<td>This storm produced ice several inches thick on trees, power lines, and other exposed surfaces causing massive power outages. Statewide, the storm knocked out power to about 55,000 customers (an estimated 125,000 people). For many residents, no electrical power meant no heat, no running water, and any means for cooking food. There were no reported fatalities, but carbon monoxide poisoning was a problem and many residents were treated at area hospitals.</td>
</tr>
<tr>
<td>May 25, 2006</td>
<td>Severe Storm & Flooding</td>
<td>$17,691,586 PA/IA</td>
<td>Low pressure system that resulted in over 12 inches of rain in some locations in a 72-hour period. Homes and businesses were damaged extensively. Two dams on the Salmon Falls River were being monitored as it was feared they may fail.</td>
</tr>
<tr>
<td>April 27, 2007</td>
<td>Severe Storm & Flooding</td>
<td>$27,000,000 PA/IA</td>
<td>This storm brought heavy rain which, when combined with snow melt, produced widespread flooding. Strong winds resulted in downed trees and power outages, especially near the coast, and numerous road closures.</td>
</tr>
<tr>
<td>August 11, 2008</td>
<td>Severe Storms, Tornado, & Flooding</td>
<td>$1,691,240 PA</td>
<td>An F1 tornado touched down in southern and central New Hampshire, resulting in one fatality and damage to over 100 structures. No major impacts were experienced in Somersworth.</td>
</tr>
</tbody>
</table>
Multi-Hazard Mitigation Plan Update 2016
City of Somersworth, New Hampshire

<table>
<thead>
<tr>
<th>Date</th>
<th>Event Description</th>
<th>Program Key</th>
<th>Amount</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 2, 2009</td>
<td>Severe Winter Storm</td>
<td>DFA/PA</td>
<td>$19,789,657</td>
<td>A major winter storm that brought a mixture of snow, sleet, and freezing rain. In southern New Hampshire, there was about a half inch to about an inch of ice accretion on trees and wires. Power outages impacted approximately 400,000 customers, some for 2 weeks.</td>
</tr>
<tr>
<td>March 29, 2010</td>
<td>Severe Winter Storm</td>
<td>PA</td>
<td>$9,103,138</td>
<td>This violent storm left more than 330,000 residents in the state without power and 1 million across the Northeast after high winds and rain hit the region.</td>
</tr>
<tr>
<td>September 3, 2011</td>
<td>Tropical Storm Irene</td>
<td>PA/IA</td>
<td>$11,101,752</td>
<td>This storm produced strong winds and rain. The rain was heavy at times. However, there was no major damage experienced within the City. There may have been sporadic power outages and tree limbs down.</td>
</tr>
<tr>
<td>March 19, 2013</td>
<td>Severe Snow and Blizzard</td>
<td>PA</td>
<td>$6,153,471</td>
<td>Known as “NEMO”, this storm brought heavy snow, however there was no major damage. There may have been some minor power outages for short periods of time. Clean-up and snow removal took more time and resources than smaller storms. The City received $49,278 in disaster relief funding for reimbursement costs for snow removal.</td>
</tr>
<tr>
<td>March 25, 2015</td>
<td>Severe Snow & Snowstorm</td>
<td>PA</td>
<td>$4,799,125</td>
<td>Known as “JUNO” this storm was much more problematic than the winter storm in 2013. At the time of the event, there was an abundance of snow already on the ground. Snow removal was slower and more costly. The City is currently awaiting $33,476 in disaster relief funding for reimbursement costs for snow clean-up and removal. The School is currently awaiting $36,340 in disaster relief funding for reimbursement costs for snow clean-up and removal.</td>
</tr>
</tbody>
</table>

11 declarations totaling approximately $114,410,893

Program Key: PA: Public Assistance, IA: Individual Assistance, DFA: Direct Federal Assistance
Table 2.2: Emergency Declaration (EM) 1990-2015 impacting the City of Somersworth

<table>
<thead>
<tr>
<th>Date Declared</th>
<th>Event</th>
<th>Amount</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 16, 1993</td>
<td>Heavy Snow</td>
<td>$832,396 PA</td>
<td>Known as the “Storm of the Century”, this large superstorm was unique for its intensity and massive size. The southeastern part of the U.S. was hit particularly hard (Alabama had isolated reports of 16 inches of snow). Lincoln, NH reported 35 inches of snow.</td>
</tr>
<tr>
<td>March 28, 2001</td>
<td>Snow Emergency</td>
<td>$4,500,000 PA</td>
<td>Late winter storm that occurred from March 5-7, which brought heavy snowfall.</td>
</tr>
<tr>
<td>March 11, 2003</td>
<td>Snow Emergency</td>
<td>$3,000,000 PA</td>
<td>Known as the “President’s Day” storm, over $1.5 million dollars was allocated for snow removal costs to the five New England states.</td>
</tr>
<tr>
<td>March 30, 2005</td>
<td>Snow Emergency</td>
<td>$4,654,738 PA</td>
<td>Winter storm that occurred from February 10-11, which resulted in over $1.1 million to help pay for costs of heavy snow and high winds.</td>
</tr>
<tr>
<td>December 13, 2008</td>
<td>Severe Winter Storm</td>
<td>$900,000 DFA/PA</td>
<td>An ice storm that struck most of New England, which left several million people without power. Shelters were opened in four states to house those without power and no alternative means of heating their residence.</td>
</tr>
<tr>
<td>November 1, 2011</td>
<td>Severe Winter Storm</td>
<td>Data not available PA</td>
<td>This storm was known as the “Halloween Storm”. Due to heavy, wet snow and leaf-on conditions there was sporadic power outages, as well as damage to trees and telephone wires.</td>
</tr>
<tr>
<td>October 30, 2012</td>
<td>Hurricane Sandy</td>
<td>$643,660 PA</td>
<td>During this storm, the Emergency Operations Center was opened and staffed by municipal staff. This storm produced some strong winds and rain. The rain was heavy at times. However, there was no major damage experienced within the City. There may have been sporadic power outages and tree limbs down.</td>
</tr>
</tbody>
</table>

7 emergency declarations totaling approximately $14,530,794

Program Key: PA: Public Assistance, DFA: Direct Federal Assistance
Rating Probability, Severity, and Overall Risk of Future Disasters

The nature of each hazard type and the quality and availability of corresponding data made the evaluation of hazard potential difficult. The Multi-Hazard Planning Team considered what data was at hand and used its collective experience to formulate statements of impact or potential. Each hazard type was rated using a hazard vulnerability assessment tool [refer to Table 2.3]. This tool estimates the probability of occurrence, severity, and overall risk of an event using a projected number system answering questions, which answer High (3), Moderate (2), and Low (1). A zero (0) score meant that there is no likelihood the hazard would impact the City in the next 25 years. The ranges established for the average to determine severity were:

- High = >3
- Moderate = 2
- Low = 1 or below

The overall risk is a numeric indication developed by multiplying the total numbers of the probability and the severity.

Probability of Occurrence

Probability is based on a limited objective appraisal of a hazard's probability using information provided by relevant sources, observations and trends. The Planning Team came together and broke down each hazard and the City's subsequent vulnerability.

- High: There is 66.1-100% likelihood that Somersworth will experience a hazardous event within the next 25 years. Score = 3
- Moderate: There is 33.1-66% likelihood that Somersworth will experience a hazardous event within the next 25 years. Score = 2
- Low: There is 0-33% likelihood that Somersworth will experience a hazardous event within the next 25 years. Score = 1

Severity

Severity is an estimate generally based on a hazard's impact human, property and business. The Planning Team came together and broke down the City's impact to these hazards. The severity was calculated by the average of human, property and business.

- High: The total population, property, commerce, infrastructure and services of the City are uniformly exposed to the effects of a hazard of potentially great magnitude. In a worst case scenario there could be a disaster of major to catastrophic proportions. Score = 3
Multi-Hazard Mitigation Plan Update 2016
City of Somersworth, New Hampshire

- **Moderate**: The total population, property, commerce, infrastructure and services of the City are exposed to the effects of a hazard of moderate influence; or the total population, property, commerce, infrastructure and services of the community is exposed to the effects of a hazard, but not all to the same degree; or an important segment of population, property, commerce, infrastructure or service is exposed to the effects of a hazard. In a worst case scenario there could be a disaster of moderate to major, though not catastrophic, proportions. Score = 2

- **Low**: A limited area or segment of population, property, commerce, infrastructure or service is exposed to the effects of a hazard. In a worst case scenario there could be a disaster of minor to moderate proportions. Score = 1

Overall Risk

The risk number is one, which can help the City weigh the hazards against one another to determine which hazard is most detrimental. This is calculated by multiplying the *Probability of Occurrence* score by the average of the *Severity* score (human, property, and business impacts).

- **High**: There is a great risk of this hazard in Somersworth. Score = 4 or greater
- **Moderate**: There is moderate risk of this hazard in Somersworth. Score = 2-3
- **Low**: There is little risk of this hazard in Somersworth. = 1 or less

Hazard Ratings in Somersworth, NH

The Team determined that the hazards are distributed as follows:

- **4** hazards rated as having a **high** overall risk in Somersworth are: Flooding, Hurricane & Tropical Storms, Thunderstorm, and Severe Winter Weather.

- **7** hazards rated as having a **moderate** overall risk in Somersworth are: Ice Jam, Dam Failure, Extreme Temperatures, Earthquake, Tornado & Downburst, Public Health Threats, and Hazardous Materials.

- **3** hazards rated as having a **low** overall risk in Somersworth are: Wildfire, Landslide, and Drought.

Table 2.3 is the City’s vulnerability assessment tool, which provides more information on the multi-hazard threat analysis that was completed during a brainstorming session with the Planning Team.
Table 2.3: Hazard Vulnerability Assessment Tool – City of Somersworth

<table>
<thead>
<tr>
<th>Hazard Event</th>
<th>Human Impact</th>
<th>Property Impact</th>
<th>Business Impact</th>
<th>Severity</th>
<th>Probability</th>
<th>Overall Threat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flooding</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Ice Jam</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Dam Failure</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Hurricane & Tropical Storms</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Extreme Temps</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Wildfire</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Earthquake</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Landslide</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Severe Winter Weather</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Tornado & Downburst</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Drought</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Severe Thunderstorms</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Public Health</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Hazardous Materials</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
Description of Hazards

This section describes the location and extent of hazards that could impact the City of Somersworth, presents past hazard events in the City or elsewhere in New Hampshire, and discusses their rank order placement. The Multi-Hazard Planning Team investigated past and potential hazards using a variety of sources and techniques, including but not necessarily limited to interviewing City historians and other citizens; researching historical records archived at the City Library; scanning old newspapers; reading published City histories; consulting various hazard experts; and extracting data from the NH Hazard Mitigation Plan and other state and federal databases. With spatial data available, past and potential hazards were mapped.

Flooding

Riverine flooding is the most common natural disaster to impact New Hampshire. Floods are a common and costly hazard. They are most likely to occur in the spring due to the increase in rainfall and the melting of snow; however, floods can occur at any time of the year because of heavy rains, hurricane, or a Nor’easter.

New Hampshire usually has a climate of abundant precipitation. Weather ranges from moderate coastal to severe continental, with annual precipitation ranging from about 35 inches in the Connecticut and Merrimack River valleys, to about 90 inches on top of Mount Washington. Localized street flooding occasionally results from severe thundershowers, or over larger areas, from more general rain such as tropical cyclones and coastal “nor’easters.” More general and disastrous floods are rare, but some occur in the spring from large rainfall quantities combined with warm, humid winds that rapidly release water from the snowpack.

Causes of flooding other than a 100-yr. rainstorm—severe tropical storm (hurricane or tropical storm), rapid snow pack melt, river ice jams, erosion and mudslide, and dam breach or failure—all have some potential to affect Somersworth. These storms often bring torrential rainfall. Some hurricanes have been known to deliver rainfall well in excess of that from a 500-yr. storm. The 100-yr. floodplain data available for this analysis does not well account for the effects of such special weather events. Rapid snow melt in spring is always a significant potential flooding source, given the northern, relatively cold location and climate of Somersworth, and has occurred multiple times in the past. Erosion and mudslide in steep slope areas resulting from heavy rainfall could alter topology enough to cause flooding.

The “100-year flood” Term:

The “100-year flood” is a term often used to describe a flood that has a 1% chance of occurring in any year. But the phrase is misleading, and often causes people to believe these floods happen every 100 years on average. The truth is, these floods can happen quite close together, or not for long stretches of time, but the risk of such a flood remains constant from year to year. The 100-year flood term was originated to delineate areas on a map to determine what properties are subject to the National Flood Insurance Program. Properties within the 100-year-floodplain, as defined by the Federal Emergency Management Agency, have special requirements and mortgage holders will require owners to carry flood insurance on these properties.

[Source: The Nurture Nature Center: Focus on Floods]
Based on the floodplain extent of the Flood Insurance Rate Map – dated May 17, 2005, Somersworth has flooding potential along Tates Brooks, Peters Marsh Brook, and the Salmon Falls River. There is also limited floodplain along a smaller stream feeding into Lily Pond. Somersworth has approximately 10.8% (692.7 acres) of its area in 100-yr. floodplain. However, it should be noted that a large portion of the floodplain is delineated over open water along the Salmon Falls, Lily Pond, and Willand Pond, which influences the total acreage. If the floodplain was removed from open water, the amount of floodplain impacting the City would be smaller.

Although flooding of the full extent of this floodplain by definition would require a 100-yr. storm, smaller storms with a higher annual probability of occurrence could still flood significant portions of that floodplain. Some of the structures that would be impacted by a 100-yr. storm could also be affected by smaller, more frequent flooding.

Somersworth was hit the hardest during the severe weather events in 2006, 2007, and 2010. During the 2006 and 2007 storms, the City saw major flooding along Salmon Falls Road, Blackwater Road, West High Street, and Maple Street that caused major damage, road closures, and general erosion. During each of these events the wastewater treatment facility was impacted by flooding, which included loss of power and additional equipment (pumps, blowers, generator, etc.), fuel oil loss, and debris carried throughout entire facility. The City has since taken numerous preventative measures and made significant upgrades to the plant, which include: new clear well hatches that are elevated and sealed, a new generator to be self-contained with raised fuel storage, upgrades to storm windows and doors, the propane tanks are strapped to cement pads, and the installation of flood gates for entranceways.

Overall, flooding potential is high and flood conditions will continue to affect the City of Somersworth. Both seasonal flooding and flooding due to extreme weather events have the potential to occur during all seasons.

Ice Jam

Instances of ice jam flooding on the Salmon Falls River have been rare to non-existent. The Army Corps of Engineers Ice Jam Database contains no record of ice jams in Somersworth, and the Committee did not encounter any record or reference to ice jamming in the City. Although some anecdotal information indicates that ice formation and ice flows do occur on the Salmon Falls River, the Hazard Mitigation Planning Committee referenced an ice dam in 1974-1975 that required blasting using dynamite.
Ice jam events, though the possibility of their occurrence definitely exists, seem not to have been a problem in the past.

Dam Failure

The potential for catastrophic flooding from dam breach or failure does exist in Somersworth. The Lower Great Falls Dam (Code #218.01) is classified as a High Hazard Dam, which means that the dam has a high hazard potential because it is in a location and of a size that failure or misoperation of the dam would result in probable loss of human life. According to the dam inundation mapping that was completed for the region, if the Lower Great Falls dam either failed or was breached there would be approximately 36 acres of inundation in Somersworth along the Salmon Falls River.

According to the NHDES Dam Bureau, the Lower Great Falls dam was last inspected on 9/12/2013 by the Federal Energy Regulatory Commission (FERC) with assistance from NHDES. FERC has the primary authority of inspection (FERC’s has determined the dam’s hazard class as significant) due to the dam’s license to produce hydropower. The dam was inspected again in late 2015.

Severe Thunderstorms

Thunderstorm related hazards that could impact Somersworth include: high winds and downburst, lightning, hail, and, torrential rainfall. Thunderstorms are common in New Hampshire but can be considered generally less severe than in other areas of the country, such as the Great Plains states. Severe thunderstorms do occur in New Hampshire, though. The National Climatic Data Center Storm Events database (NCDC 2015) lists 28 reported events (over 15 different days) of severe thunderstorm winds in Strafford County from January 1, 2010 to May 31, 2015. During that time period there were no reported events in Somersworth.

Lightning can cause significant, sometimes severe, damage. Lightning strikes can cause direct damage to structures and serious injury or death to people and animals. Extensive damage also commonly results from secondary effects of lightning, such as electrical power surges, wildfire, and shockwave. According to lightning fatality data collected by the National Oceanic and Atmospheric Administration (NOAA), there were 322 fatalities in the United States from 2005 - 2014. There were no reported deaths in NH. The National Climatic Data Center Storm Events database (NCDC 2015) lists 10 reports (over eight different days) of lightning events in Strafford County from January 1, 2005 to May 31, 2015, causing 5 injuries and an estimated $265,500 dollars in property damages. It should be noted that none of these events took
place in Somersworth and there hasn't been a report of a significant event reported in Strafford County since 2008. However, localized events have occurred, including lightning damage to homes and City facilities which caused minor electrical issues. The planning committee discussed past challenges with lightning strikes at the old police station. The City has since installed a more adequate grounding system. Overall damage is most likely to be done through secondary effects like wildfire or tree felling. Direct strikes of people and buildings, however, remain a distinct possibility. Loss of life is generally not likely, but the opening of a new golf course in Somersworth might significantly increase the likelihood of direct strikes on people, as do outdoor events, such as the Somersworth International Children's Festival.

Finally, hail is a fairly common part of thunderstorms in New Hampshire, but damaging hail is apparently not. The damage that can result is mostly to cars and windows. The NCDC Storm Events database lists 11 reported hailstorms (over 9 days) in Strafford County from January 1, 2010 to May 31, 2015. None of these events took place in Somersworth.

The annual recurrence probability of thunderstorms in general is effectively 100% with damaging ones occurring less often. Somersworth will continue to experience thunderstorms and should expect to sustain significant damage periodically. Overall the recurrence probability for thunderstorms is high. Geographically specific information is unavailable or unfeasible and this hazard can impact the entire jurisdiction equally.

Wildfire

According to the State of New Hampshire Multi-Hazard Mitigation Plan (2013), New Hampshire is a heavily forested state and is therefore vulnerable to this hazard, particularly during periods of drought and/or large-scale natural disturbances causing unusual fuel buildup. The proximity of many populated areas to the State’s forested lands exposes these areas and their populations to the potential impact of wildfire.

The Granite State is the second most forested state in the United States (trailing only Maine). Forests occupy 84 percent, or 4.8 million acres. The southern portion of the State has seen rapid commercial and residential development which has extended into previously forested areas. Although this development has slowed, this sprawl has created its own concerns regarding the increased risk of damage in the wildland-urban interface. In a study conducted by the United States Forest Service in 2006, New Hampshire was ranked as having the highest percentage of homes in the wildland-urban interface of any state in the nation.
Multi-Hazard Mitigation Plan Update 2016
City of Somersworth, New Hampshire

Somersworth has some forested areas, especially in the north and southwest parts along the Dover and Rochester borders. Mobile home parks, such as Crystal Springs and Colonial Pines, are particularly vulnerable. Other potential wildfire areas are in the north central section of the City surrounding Tates Brook and in the southeast of the City in the area around Twombley Brook. The latter area, though not large, is of particular note, because it is contiguous with the large, undeveloped woodland in Rollinsford known as the Scoutlands. Exposure to natural factors, such as lightning, that start wildfires is consequently high. Wildfires in New Hampshire historically have tended to run in 50-yr cycles, which can be observed starting from the 1800s. This 50-year cycle is partially based upon human activities and, therefore, may not prove to be accurate into the future. ²

The National Wildfire Coordinating Group (NWCG) defines the size of a wildfire as:

- Class A - one-fourth acre or less;
- Class B - more than one-fourth acre, but less than 10 acres;
- Class C - 10 acres or more, but less than 100 acres;
- Class D - 100 acres or more, but less than 300 acres;
- Class E - 300 acres or more, but less than 1,000 acres;
- Class F - 1,000 acres or more, but less than 5,000 acres;
- Class G - 5,000 acres or more.

The peak in wildfires in the late 1940's and early 1950's is thought to be related to the increased fuel load from trees downed in the 1938 hurricane. Here, 60 years later, New Hampshire officials are again concerned about the high fuel load created by the 1998 and 2008 ice storms that hit New Hampshire.

The NCDC Storm Events database lists 0 reported wildfires in Strafford County from January 1, 2010 to April 30, 2015.

The probability of occurrence of wildfires in the future is effectively impossible for the Hazard Mitigation Committee to predict due to the dependence of wildfire on the occurrence of the causal hazards and the variability of numerous factors that affect the severity of a wildland fire. Geographically specific information is unavailable or unfeasible and this hazard can impact the entire jurisdiction equally.

Severe Winter Weather

Winter snow and ice events are common in New Hampshire. The NCDC Storm Events database reports 34 heavy snow events, 2 blizzards, 1 ice storm, and 6 winter storms (nor'easters) among large winter weather events impacting Strafford County from January, 1 2008 to April 30,2015. Heavy snow typically brings significant snow removal costs along with delays in transportation schedules. Wet snow can result in major infrastructure damage from heavy snow loads and has been the cause of human harm during long periods of shoveling, including back injuries and in some cases heart attacks to older individuals. The most severe damage, though, often comes from ice storms and winter nor'easters.

<table>
<thead>
<tr>
<th>Severe Winter Vulnerability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severity</td>
</tr>
<tr>
<td>Probability</td>
</tr>
<tr>
<td>Overall Risk</td>
</tr>
</tbody>
</table>

Three events of those listed in the NCDC database are of particular note for their severity:

1. **The Ice Storm of 2008** (December 11th – 12th) was a major winter storm that brought a mixture of snow, sleet, and freezing rain. The greatest impact in the state was in southern and central New Hampshire where a significant ice storm occurred. Following the ice storm, recovery and restoration efforts were negatively impacted by additional winter weather events that passed through the state. The freezing rain and sleet ranged from 1 to 3 inches, ice accretion to trees and wires in these areas generally ranged from about a half inch to about an inch. The weight of the ice caused branches to snap, and trees to either snap or uproot, and brought down power lines and poles across the region. About 400 thousand utility customers lost power during the event, with some customers without power for two weeks. Property damage across northern, central and southeastern NH was estimated at over $5 million.

2. **The Blizzard of 2013 – NEMO** (February 8th-9th) was an area of low pressure developed rapidly off the Carolina coast late on the 7th and early on the 8th. The storm moved very slowly northeast during the 8th and 9th as it continued to intensify. By the morning of the 10th, the storm was located just to the east of Nova Scotia. The storm brought heavy snow, high winds, and blizzard conditions to the southeastern part of the state. Snowfall amounts were generally 18 inches or more in the southeast where blizzard conditions caused considerable blowing and drifting snow. In western and northern sections, snowfall amounts were in the 4 to 18 inch range. Southeastern New Hampshire had blizzard conditions for about 3 to 10 hours. This storm brought heavy snow, however there was no major damage. There may have been some minor power outages and school closures for short periods of time. Clean-up and snow removal took more time and resources than smaller storms.

3. **The Blizzard of 2015 – JUNO** (January 26th – 28th) was area of low pressure developed off the Delmarva peninsula on Monday, January 26th, and intensified rapidly as it moved slowly northward through the 27th. Snow spread northward across the region Monday night and became heavy on Tuesday, the 27th. Winds became strong during the day Tuesday leading to blizzard conditions at times along and inland from the coast. The snow persisted into Tuesday night in many areas with blowing and drifting snow. Along the coast, large waves combined with a storm surge produced coastal flooding and splash over. In Hampton, the Tuesday morning tide was 1.43 feet above flood levels (see graph below), inundating many streets on the bay side of town. Snowfall amounts ranged from 10 to more than 30 inches across much of the southeastern part of the state. Heavy snow also resulted in localized power outages in the downtown along Main Street and Washington Street. The Flanagan Center was open for one night as a warming station; the City Hall was closed. This storm was much more problematic than the winter storm in 2013. At the time of the event, there was an abundance of snow already on the ground. Snow removal was slower and more costly.

The committee also identified one other winter storm, which was not considered a FEMA declaration. The pre-Thanksgiving Day snow event in late November, 2014 resulted in heavy wet snow, which produced scattered power outages across the city for two full days. Along with school closures and some municipal building closures, this storm disrupted many travel plans for the holiday weekend including major delays at airports and hazardous travel by car on local and state roads.
The Sperry–Piltz Ice Accumulation Index, or SPIA Index, is a forward-looking, ice accumulation and ice damage prediction index that uses an algorithm of researched parameters that, when combined with National Weather Service forecast data, predicts the projected footprint, total ice accumulation, and resulting potential damage from approaching ice storms. It is a tool to be used for risk management and/or winter weather preparedness.

Somersworth will continue regularly to receive impacts from severe, regional winter weather events. Due to its heavily forested nature, the City is most highly exposed in terms of damage to forest resources and the secondary impacts of those damages.

Geographically specific information is unavailable or unfeasible and this hazard can impact the entire jurisdiction equally.

Earthquake

The USGS defines an earthquake as a term used to describe both sudden slip on a fault, and the resulting ground shaking and radiated seismic energy caused by the slip, or by volcanic or magmatic activity, or other sudden stress changes in the earth. Earthquakes can cause buildings and bridges to collapse, disrupt gas, electric and phone lines, and often cause landslides, flash floods, fires, avalanches, and tsunamis. Larger earthquakes usually begin with slight tremors but rapidly take the form of one or more violent shocks, and are followed by vibrations of gradually diminishing force called aftershocks. The magnitude and intensity of an earthquake is measured by the Richter scale and the Modified Mercalli Intensity (MMI) scale, respectively.

The Richter magnitude scale was developed in 1935 by Charles F. Richter of the Northeast States Emergency Consortium Earthquake Hazards. http://nesec.org/earthquakes-hazards/. Viewed on 8/10/15

the California Institute of Technology as a mathematical device to compare the size of earthquakes. The magnitude of an earthquake is determined from the logarithm of the amplitude of waves recorded by seismographs. Adjustments are included for the variation in the distance between the various seismographs and the epicenter of the earthquakes.\(^4\)

The Modified Mercalli Intensity (MMI) scale was developed in 1931 by the American seismologists Harry Wood and Frank Neumann. This scale, composed of 12 increasing levels of intensity that range from imperceptible shaking to catastrophic destruction, is designated by Roman numerals. It does not have a mathematical basis; instead it is an arbitrary ranking based on observed effects actually experienced at a given place and therefore has a more meaningful measure of severity.\(^5\)

Due to the state’s location in an area of moderate seismic activity earthquakes are a common event in New Hampshire, but significantly damaging earthquakes are not. The Northeast States Emergency Consortium (NESEC, 2015) website presents a history of earthquake in the Northeast and documents that New Hampshire is an area of high earthquake probability. Three hundred and sixty earthquakes occurred in New Hampshire from 1638 to 2007. However, New Hampshire has only experienced nine earthquakes of significant magnitude (Richter Magnitude 4.0 or greater) in that time period.

This data would suggest, then, that earthquakes are on average an annual occurrence but that significant quakes have an annual probability of occurrence (based on the 1638 to 2007 period) of about 2.4%.

Table 2.4: Notable Historic Earthquakes in NH 1638-2007 (Magnitude 4.0 or Greater)

<table>
<thead>
<tr>
<th>Location</th>
<th>Date</th>
<th>Intensity MMI Scale</th>
<th>Magnitude Richter Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central New Hampshire</td>
<td>June 11, 1638</td>
<td>-</td>
<td>6.5</td>
</tr>
<tr>
<td>Portsmouth</td>
<td>November 10, 1810</td>
<td>V</td>
<td>4.0</td>
</tr>
<tr>
<td>Near Hampton</td>
<td>July 23, 1823</td>
<td>IV</td>
<td>4.1</td>
</tr>
<tr>
<td>Ossipee</td>
<td>October 9, 1925</td>
<td>VI</td>
<td>4.0</td>
</tr>
<tr>
<td>Ossipee</td>
<td>December 20, 1940</td>
<td>VII</td>
<td>5.5</td>
</tr>
<tr>
<td>Ossipee</td>
<td>December 24, 1940</td>
<td>VII</td>
<td>5.5</td>
</tr>
<tr>
<td>West of Laconia</td>
<td>January 19, 1982</td>
<td>-</td>
<td>4.7</td>
</tr>
<tr>
<td>Northeast of Berlin</td>
<td>October 20, 1988</td>
<td>-</td>
<td>4.0</td>
</tr>
<tr>
<td>Southeast of Berlin</td>
<td>April 6, 1989</td>
<td>-</td>
<td>4.1</td>
</tr>
</tbody>
</table>

While not in New Hampshire, there was a 4.6 magnitude earthquake that took place centered near Hollis Center, Maine, approximately 21 miles west of Portland on October 16, 2012. According to news reports, the earthquake shook houses in Boston and Connecticut, but it apparently did not cause any injuries or

damage. The planning committee discussed that the earthquake was felt locally, but could not recall any major damage or disruption to services.

Geographically specific information is unavailable or unfeasible and this hazard can impact the entire jurisdiction equally.

Landslide

Landslides would occur in Somersworth in areas with steep slopes, where soils and loose bedrock formations would tend to slough off and move en masse downhill under gravity. Earthquakes could readily cause landslides, as could ground saturation from extended heavy precipitation events. Given seismic or precipitation events that could initiate landslide, landslide hazard is likely quite high in steep slope areas. In Somersworth, steep slopes cover approximately 0.3% (18.9 acres) of the total area in city. The Hazard Mitigation Committee did not have the expertise available to analyze the actual probability of a landslide happening. However, the USGS (1997) classifies landslide incidence regionally as very low (less than 1.5% of land area involved).

The local probability in Somersworth will depend on specific soil/rock types and upon the probability of initiating events. The overall probability of landslide, then, is likely lower than that for the initiating events themselves.

Drought

A drought is defined as a long period of abnormally low precipitation, especially one that adversely affects growing or living conditions. Droughts have occurred, but are rare in New Hampshire. They generally are not as damaging and disruptive as floods and are more difficult to define. The effect of droughts is indicated through measurements of soil moisture, groundwater levels, and streamflow. However, not all of these indicators will be minimal during a drought. For example, frequent minor rainstorms can replenish the soil moisture without raising groundwater levels or increasing streamflow. Low streamflow also correlates with low ground-water levels because ground water discharge to streams and rivers maintains streamflow during extended dry periods. Low streamflow and low ground-water levels commonly cause diminished water supply.

Droughts have been recurring through the past centuries. Normal precipitation for the state averages 40
inches per year. During the summer of 2015, most of central and southern New Hampshire experienced its most recent drought, the first since 2001 – 2002 (was the 3rd worst on record, exceeded only by the national droughts of 1956-1966 and 1941-1942). While many communities experienced record snowfall totals this past winter (2014-2015), the lack of rainfall and higher-than-average temperatures resulted in river and groundwater levels to be lower than average. This resulted in the implementation of local water conservation plans throughout the region.

Hydrological drought is evidenced by extended periods of negative departures. Six droughts of significant extent and duration were evident in the 20th century as noted below in Table 2.5. The most severe drought recorded in New Hampshire occurred from 1960 to 1969. This drought encompassed most of the northeastern United States (1956-1966). The drought of 1929-1936 was the second worst and coincided with severe drought conditions in large areas of the central and eastern United States. The drought of 2001-2002 was the third worst on record.6

The National Drought Monitor classifies the duration and severity of the drought using precipitation, stream flow, and soil moisture data coupled with information provided on a weekly basis from local officials. There are five magnitudes of drought outlined in the New Hampshire State Drought Management Plan, including Exceptional, followed by Extreme, Severe, Moderate and Abnormally Dry.

Table 2.5: New Hampshire Drought History & Conditions

<table>
<thead>
<tr>
<th>Dates</th>
<th>Area Affected</th>
<th>Magnitude</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1929 – 1936</td>
<td>Statewide</td>
<td>-</td>
<td>Regional; recurrence interval 10 to > 25 years</td>
</tr>
<tr>
<td>1939 – 1944</td>
<td>Statewide</td>
<td>Severe Moderate</td>
<td>Severe in southeast NH and moderate elsewhere in the State. Recurrence interval 10 to > 25 years.</td>
</tr>
<tr>
<td>1947 – 1950</td>
<td>Statewide</td>
<td>Moderate</td>
<td>Recurrence interval 10 to >25 years</td>
</tr>
<tr>
<td>1960 – 1969</td>
<td>Statewide</td>
<td>Extreme</td>
<td>Longest recorded continuous spell of less than normal precipitation. Encompassed most of the northeast US. Recurrence interval >25 years.</td>
</tr>
<tr>
<td>2001 – 2002</td>
<td>Statewide</td>
<td>Severe</td>
<td>Recurrence interval 10 to >25 years</td>
</tr>
<tr>
<td>2015</td>
<td>Central & Southern NH</td>
<td>Moderate</td>
<td>Recurrence interval cannot yet be determined</td>
</tr>
</tbody>
</table>

Historically, droughts in New Hampshire have had limited effect because of the plentiful water resources and sparse population. Since 1960, the population has more than doubled, which has increased demand for the State’s water resources. Further droughts may have considerable effect on the State’s densely populated areas along the seacoast and in the south-central area.

With extreme variation in environmental conditions due to climate change possibly on the rise, drought probability may grow in the future. Currently, drought possibility seems moderate. The large amount of water resources and relatively sparse population in New Hampshire have tended to minimize the impacts of drought events in the region, but this regional protection may be endangered in the future with increases in drought frequency or severity. Geographically specific information is unavailable or unfeasible and this hazard can impact the entire jurisdiction equally.

Hurricane & Tropical Storms

According to the State Hazard Mitigation Plan (2013) tropical cyclones with maximum sustained winds of less than 39 mph are called tropical depressions. Once the tropical cyclone reaches winds of at least 39 mph, they are typically called a tropical storm and assigned a name. If the winds reach 74 mph or greater, they are upgraded and called a hurricane. The Saffir-Simpson Hurricane Wind Scale is a 1 to 5 rating system based on a hurricane's sustained wind speed. This scale estimates potential property damage. Hurricanes reaching Category 3 and higher are considered major hurricanes because of their potential for significant loss of life and damage. Category 1 and 2 storms are still dangerous, however, and require preventative measures.

These severe tropical storms may occur anytime from early spring to late fall, and in general are less common than other storms, e.g. nor'easters. As wind events, historically hurricanes have caused damage in Somersworth, most notably in 1938 and 1954 (Hurricane Carol). Quite a few other hurricanes have impacted the City, including Hurricane Donna, Gloria, and Bob, with high winds but relatively little damage. The NOAA National Climatic Data Center's Storm Events database (NCDC 2015) does not list any Hurricanes as directly affecting Strafford County from January 1, 2010 to April 30, 2015. The database does report one tropical storm event, which is detailed as follows:

1. Tropical Storm Irene (August 28, 2011) - brought a prolonged period of strong and gusty winds and heavy rain to the state. The high winds snapped or uprooted numerous trees throughout the state causing more than 160,000 customers to lose electrical and/or communication services. The heavy rains caused rivers and streams throughout the state to flood causing damage to bridges, roads, and property. The strongest winds across the state began Sunday morning in southern areas and spread northward during the day. Winds continued to be gusty overnight as the storm moved away from the area. Observed maximum wind gusts included 63 mph at Portsmouth, 52 mph at Concord, and 51 mph at Manchester. On the top of Mt. Washington, winds gusted to 104

<table>
<thead>
<tr>
<th>Scale Number (Category)</th>
<th>Sustained Winds (MPH)</th>
<th>Damage</th>
<th>Storm Surge</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>74-95</td>
<td>Minimal: Unanchored mobile homes, vegetation and signs.</td>
<td>4-5 feet</td>
</tr>
<tr>
<td>2</td>
<td>96-110</td>
<td>Moderate: All mobile homes, roofs, small crafts, flooding.</td>
<td>6-8 feet</td>
</tr>
<tr>
<td>3</td>
<td>111-130</td>
<td>Extensive: Small buildings, low-lying roads cut off.</td>
<td>9-12 feet</td>
</tr>
<tr>
<td>4</td>
<td>131-155</td>
<td>Extreme: Roofs destroyed, trees down, roads cut off, mobile homes destroyed. Beach homes flooded.</td>
<td>13-18 feet</td>
</tr>
</tbody>
</table>
mph as the storm approached and 120 mph as it moved away. The combination of wet soil and the prolonged period of strong and gusty winds brought down numerous trees throughout the state. One person was killed and three people were injured across the state due to falling trees or branches. Rainfall amounts across the state ranged from 1.5 to 3 inches across southeastern New Hampshire.

The last hurricane to hit the region was Hurricane Sandy during the period of October 26 to November 8, 2012. During the storm, the City experienced a number of road closures due to downed trees and other debris. The Emergency Operations Center was opened for emergency responders and municipal staff. Declaration FEMA-4095 requested funds for debris removal and emergency protective measures.

Based on historical data and statistical predictors, the Atlantic Basin averages approximately 12 total named storms per year. Six of those storms will become hurricanes with three becoming a category three or higher. With variability in sea-level pressure and sea-surface temperatures in the Atlantic Ocean, it is difficult to predict with certainty the number of storms in any given year. It is even more difficult to determine which of those storms will make landfall. Because Somersworth is considerably inland from the New Hampshire coast, wind speeds may be diminished from their coastal strength, and significant impact on the City would be dependent on the exact track of these concentrated storms. However, the community remains vulnerable to flooding from both high amounts of precipitation and coastal surge along the Salmon Falls River.

Hurricanes and tropical storms will continue to affect Somersworth and recurrence potential of hurricane and tropical storm hazards is, therefore, moderate. From 1938-2012 there have been twelve significant hurricanes or tropical storms that have impacted the community and the surrounding region. It is likely that the region will be impacted by a significant storm of tropical origin within the foreseeable future. Geographically specific information is unavailable or unfeasible and this hazard can impact the entire jurisdiction equally.

Hazardous Material

Hazardous materials in various forms can cause death, serious injury, long-lasting health effects, and damage to buildings, homes, and other property. Many products containing hazardous chemicals are used and stored in homes routinely. These products are also shipped daily on the nation's highways, railroads, waterways, and pipelines. Chemical manufacturers are one source of hazardous materials, but there are many others, including service stations, hospitals, and hazardous materials waste sites. Hazardous materials continue to evolve as new chemical formulas are created.

The NH North Coast rail line runs through Somersworth in the densely developed and populated downtown area, mostly carrying freight and Liquid Propane Gas “LPG” to Eastern Propane & Oil terminal in North Rochester. Transportation of chemicals and bio-hazardous materials to and from Canada or Maine by railroad or truck is a concern. The potential for derailments and accidents at rail

<table>
<thead>
<tr>
<th>Hazardous Material Vulnerability</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Severity</td>
<td>2</td>
</tr>
<tr>
<td>Probability</td>
<td>1</td>
</tr>
<tr>
<td>Overall Risk</td>
<td>2</td>
</tr>
</tbody>
</table>
crossings always exists. Three major roads also pose significant hazards for the City. The Spaulding Turnpike (Route 16) is a main highway from southern New Hampshire to the Lakes Region and the White Mountains. Traffic accidents occur on this highway regularly, and hazardous materials are routinely carried on this road. State Route 9 (High Street) connects the Spaulding Turnpike with the Berwicks in Maine, passing directly through downtown Somersworth, crossing both the Salmon Falls River and the New Hampshire North Coast railroad line, and continuing eastward into Berwick, Maine. Though probably not as frequently, hazardous materials are carried on this roadway. Traffic congestion is a common problem on this route. Finally, state Route 108 is a major alternative road to the Spaulding Turnpike in western Somersworth, connecting Dover and Rochester, New Hampshire. It is a major commercial corridor.

No disastrous accidents on either the highway or rail system in Somersworth have been recorded. Safety regulations and enforcement are fairly strict, so the likelihood of an accidental and seriously damaging release of harmful chemicals in Somersworth is small. If an accident does occur, though, especially close to downtown, the percentage of the population exposed to the hazard could be large.

Tornado & Downburst

A tornado is a violent windstorm characterized by a twisting, funnel shaped cloud with winds in excess of 200 mph, often accompanied by violent lightening, peripheral high winds, severe hail, and severe rain. Tornadoes develop when cool air overrides a layer of warm air, causing the warm air to rise rapidly. The atmospheric conditions required for the formation of a tornado include great thermal instability, high humidity, and the convergence of warm, moist air at low levels with cooler, drier air aloft. Most tornadoes remain suspended in the atmosphere, but if they touch down they become a force of destruction.

Tornadoes produce the most violent winds on earth, at speeds of 280 mph or more. In addition, tornadoes can travel at a forward speed of up to 70 mph. Damage paths can be in excess of one mile wide and 50 miles long. Violent winds and debris slamming into buildings cause the most structural damage. The Fujita Scale is the standard scale for rating the severity of a tornado as measured by the damage it causes. A tornado is usually accompanied by thunder, lightning, heavy rain, and a loud "freight train" noise. In comparison to a hurricane, a tornado covers a much smaller area but can be more violent and destructive.

Between 1991 and 2010, the average annual number of tornadoes in New Hampshire was one. The severity and overall risk of tornado/downburst activities in the state is two. Though the frequency of tornado events in New Hampshire is not great, the state has experienced large tornados throughout its history. An early example is the tornado that stuck the state in September 1821. This tornado was reported to

7 NOAA. U.S. Tornado Climatology (https://www.ncdc.noaa.gov/climate-information/extreme-events/us-tornado-climatology)
have tracked from the Connecticut River, near Cornish, and terminating near Boscawen. When the skies cleared, 6 people were dead, hundreds injured and thousands homeless.

In 1998 an F2 tornado in Antrim, N.H. blew down a 45-foot by 12-foot section of the Great Brook Middle School. Witnesses reported seeing a funnel cloud, and the weather service, after an inspection, confirmed it was a tornado. According to the June 2, 1998 edition of the Eagle Tribune, John Jensenius from the National Weather Service in Gray, Maine estimated that the twister cut a path half a mile long, up to 100 yards wide, and was on the ground for several minutes.

In July 2008, an F2 tornado and high winds created a path of destruction through five New Hampshire counties that destroyed homes, displaced families, downed trees and forest lands and closed major state roadways. The impact to residents was extensive, with over 100 homes rendered uninhabitable. Phone and electric service was cut off to over 12,500 customers. One fatality is attributed to a building collapse, and local hospitals reported numerous physical injuries associated with this severe storm. An E-F1 tornado, moving north northeast out of Belknap County entered Strafford County approximately 2.2 mile north northwest of New Durham and skipped along for more than eight miles before exiting into Carroll County. The intensity of the tornado varied between F0 and F2 and numerous trees were blow down along the path of the storm. Sustained winds of 86 to 110 mph were recorded. The tornado’s path was centrally located over undeveloped land and forested areas, however at least 20 buildings were damaged in the town. Since the July 2008 tornado (through September 2015), seven tornados have hit New Hampshire, however none have hit Strafford County.

A downburst is a severe localized wind blasting down from a thunderstorm. These "straight line" winds are distinguishable from tornadic activity by the pattern of destruction and debris. Downbursts fall into two categories: microburst, which covers an area less than 2.5 miles in diameter and macroburst, which covers an area at least 2.5 miles in diameter.

Downburst activity is very prevalent throughout the State. However, the majority downburst activity is mostly unrecognized unless a large amount of damage has occurred. Several of the more significant and recent events are highlighted below:

1. **Central, NH — July 6, 1999** — Damages: Two roofs blown off structures, downed trees, widespread power outages, and damaged utility poles and wires; two fatalities.

2. **Stratham, NH — August 18, 1991** — Damages: $2,498,974 worth of damages; five fatalities.

3. **Moultonborough, NH — July 26, 1994** — Damages: Downed trees, utility poles and wires. Approximately 1,800 homes without power and 50-60 homes damages.

4. **Bow, NH — September 6, 2011** — Damages: City Auto in Bow had 15 campers damaged and estimated $200,000 in damage.

9 NOAA National Climatic Data Center. Storm Events Database. (https://www.ncdc.noaa.gov/stormevents/eventdetails.jsp?id=123355)
Considering the great dependence of impact upon the actual track of any tornado, the likelihood of a large tornado hitting Somersworth is fairly low. The tornado recurrence probability for Somersworth, therefore, is also low. A downburst may be higher. Geographically specific information is unavailable or unfeasible and this hazard can impact the entire jurisdiction equally.

Extreme Temperatures

Extreme Heat

Extreme heat events can be described as periods with high temperatures of 90°F or above. Elderly and very young populations are particularly susceptible to these events, even those of only single-day duration. Also, roads, railroads and other infrastructure can suffer significant damage during extended events.

According to a 2014 study of climate change by Climate Solutions New England, *Climate Change in Southern New Hampshire*, from 1970 to 1999, southern New Hampshire experienced an average of seven days per year above 90°F each year. This is projected to increase to 22 days per year under a low emissions scenario to nearly 50 days per year under a high emissions scenario. Between 1980 and 2009, an average of one day per year reached 95°F in southern New Hampshire. By the end of the century, the number of days per year over 95°F is expected to increase as much as six to 22 days per year. Additionally, the average daytime maximum temperature on the hottest day is expected to increase to as much as 98°F to 102°F (depending on the emissions scenario), compared to the historical average of 93°F.

Between 1960 and 2012, there was an average of 8.3 days per year (or 0.8 days/decade) greater than 90°F recorded in Durham (the closest of four stations to Somersworth included in the study). During this time the hottest day of the year averaged 95.0°F. Annual average temperatures may increase on average by 3-5°F by 2050 and 4-8°F by 2100.

Extreme Cold

What constitutes extreme cold varies by region. Characteristics of an extreme cold event in

11 Ibid
northern states include temperatures at or below zero for an extended period of time. According to the National Weather Service (NWS), extreme cold is a daily concern during the winter months for northern states.

Between 1960 and 2012, the average temperature of the coldest day of the year was \(-14.5^\circ\text{F}\) in Durham (the closest of four stations to Somersworth included in the study).\(^{12}\) Between 1980 and 2009, there were an average of 164 days per year under \(32^\circ\text{F}\) and 16 days per year under \(0^\circ\text{F}\) in southern New Hampshire. By the end of the century, southern New Hampshire is expected to see 20 fewer days below \(32^\circ\text{F}\) and only about 2 to 5 days per year under \(0^\circ\text{F}\).

Public Health Threats

Public health threats are events or disasters that can affect an entire community.

Epidemic

As defined by the Center for Disease Control (CDC) an epidemic is "the occurrence of more cases of disease than expected in a given area or among a specific group of people over a particular period of time."\(^{13}\) In addition to being categorized by the type of transmission (point-source or propagated), epidemics may occur as outbreaks or pandemics. As defined in the State Hazard Mitigation Plan, an outbreak is a sudden increase of disease that is a type of epidemic focused to a specific area or group of individuals. A pandemic is an epidemic that spreads worldwide, or throughout a large geographic area.

Epidemics may be caused by infectious diseases, which can be transmitted through food, water, the environment or person-to-person or animal-to-person (zoonoses), and noninfectious diseases, such as a chemical exposure that causes increased rates of illness. Infectious disease that may cause an epidemic can be broadly categorized into the following groups\(^{14}\):

- Foodborne (Salmonellosis, Ecoli)
- Water and Foodborne (Cholera, Giardiasis)
- Vaccine Preventable (Measles, Mumps)
- Sexually Transmitted (HIV, Syphilis)
- Person-to-Person (TB, Aseptic meningitis)
- Arthropodborne (Lyme, West Nile Virus)
- Zoonotic (Rabies, Psittacosis)
- Opportunistic fungal and fungal infections (Candidiasis)

\(^{12}\) Ibid

\(^{13}\) Slate; http://www.slate.com/id/2092969/

Multi-Hazard Mitigation Plan Update 2016
City of Somersworth, New Hampshire

An epidemic may also result from a bioterrorist event in which an infectious agent is released into a susceptible population, often through an enhanced mode of transmission, such as aerosolization (inhalation of small infectious disease particles).\(^\text{15}\)

This part of the state provides its citizens and tourists alike the opportunity for summer and winter recreation activities, which often brings outdoor enthusiasts into the region and into the City. It is also important to note a significant amount of Somersworth’s residents commute outside the City in order to get to and from work, thus increasing the threat of enabling infection and viruses to be transmitted from other parts of the State.

There is also the potential threat of an epidemic stemming from the growing population at the University of New Hampshire. Thousands of students, some of which travel from other locations throughout the world, are constantly in close quarters with their classmates, faculty staff, and local business owners for two semesters each year (not counting summer classes), making it easier for the transmittal of infectious diseases. There are also many upper classman that find off-campus housing in communities that are in close proximity to the University. This yearly influx of students does create the potential for an outbreak and poses a risk to Somersworth and the area surrounding the University. Lastly, New Hampshire maintains a tourism-driven economy and that the state welcomes visitors from all over the country. Because New Hampshire boasts a four season climate, there are people visiting the state virtually every month of the year. Similar to the University, this influx of people traveling through New Hampshire poses a threat of an epidemic outbreak.

Because of these factors, an epidemic or pandemic could present a possible threat to Somersworth. With the occurrence of worldwide pandemics such as SARS, H1N1 and Avian Flu, the community could be susceptible to an epidemic and subsequent quarantine. It was also discussed that Somersworth is an active member of the Strafford County Public Health Network (SCPHN): a collaborative of local governments and health and human service agencies preparing for and responding to public health emergencies on a regional level. While all individuals are potentially vulnerable to the hazard of an epidemic, epidemics often occur among a specific age group or a group of individuals with similar risk factors and exposure.\(^\text{16}\)

Lyme Disease

Lyme disease, which is spread to humans by the bite of an infected tick, is a growing threat in New Hampshire. New Hampshire has one of the highest rates of Lyme disease in the U.S. The number of New Hampshire residents diagnosed with Lyme disease has increased over the past 10 years, with significant increases occurring since 2005.\(^\text{17}\) In 2009, the rate of cases of Lyme disease reported in New Hampshire residents was 108 cases per 100,000 persons, which is significantly higher than the Healthy People 2010

\(^{15}\) Ibid
\(^{17}\) 2011 New Hampshire State Health Profile; Improving Health, Preventing Disease, Reducing Costs for All. NH Division of Public Health Services Department of Health and Human Services.
science-based 10-year national objective for improving the health of all Americans objective of 9.7 cases per 100,000 persons.18 From 2009 to 2013, reported cases of Lyme disease in New Hampshire increased by approximately 20\% from 1416 cases per year to 1691 cases per year.19

Rockingham, Strafford, and Hillsborough counties had the highest rates of disease in 2008-2009. In 2012, there were 172 reported cases of Lyme disease in Strafford County.20

Radon

Radon is a radioactive gas which is naturally occurring as a result of the typical decay of uranium commonly found in soil and rock (especially granite). Radon has carcinogenic properties and is a common problem in many states; New Hampshire has some isolated areas that are among the highest levels of radon in the United States according to the US Environmental Protection Agency (EPA). Whether or not a particular type of granite emanates radon is dependent on the geochemistry of that particular granite, some types are a problem and some are not. In other parts of the country, radon is associated with certain black shales, sandstones, and even limestones. The EPA has estimated that radon in indoor air is responsible for about 13,600 lung cancer deaths in this country each year (EPA document, EPA 811-R-94-001, 1994).21

Exposure is a significant hazard in New Hampshire. According to a NH Bureau of Environmental & Occupational Health (BEOH) study looking at \textgreater\textgreater 15,000 indoor radon test results in single-family dwellings, households in northern, eastern, and southeastern regions of New Hampshire especially tend to have nominally high concentrations of radon in air or water (BEOH 2004); however, values in excess of the US Environmental Protection Agency’s 4.0 picocurie per liter (pCi/L) action guideline have been found in nearly every community in New Hampshire. Values exceeding 100 pCi/L have been recorded in at least eight of New Hampshire’s ten counties. The highest indoor radon reading in New Hampshire known to NHDES is greater than 1200 pCi/L; higher values probably exist.

In the BEOH study, 44.0\% of tests in Strafford County exceeded the 4.0 pCi/L action level and 13.0\% even exceeded 12.0 pCi/L.

<table>
<thead>
<tr>
<th>County</th>
<th># Test Results</th>
<th>% of tests > 4.0 pCi/L</th>
<th>% of tests > 12.0 pCi/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strafford</td>
<td>1,645</td>
<td>44.0%</td>
<td>13.0%</td>
</tr>
<tr>
<td>Statewide</td>
<td>15,860</td>
<td>32.4%</td>
<td>8.6%</td>
</tr>
</tbody>
</table>

New development provides opportunity to test and install mitigation systems to limit exposure to building occupants.

Table 2.7: Radon Levels in Somersworth as Detected in 2015 Water Quality Results

<table>
<thead>
<tr>
<th>Analyte/Contaminant</th>
<th>MCL</th>
<th>MCLG</th>
<th>Our Water</th>
<th>Violation</th>
<th>Typical Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radon (pCi/l)²²</td>
<td>None</td>
<td>0</td>
<td><200</td>
<td>N</td>
<td>Erosion of natural deposits</td>
</tr>
</tbody>
</table>

MCL: Maximum contaminant level – the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

According to the 2015 Water Quality report, Somersworth conducted more than 700 tests for over 175 drinking water compounds. The quality of the City’s water far exceeds the standards set by state and federal regulation.

Arsenic

Arsenic is a semi-metal element that is odorless and tasteless. Arsenic is a hazard because it can enter drinking water supplies, either from natural deposits in the earth or from agricultural and industrial practices.²³

Wells drilled into New Hampshire’s bedrock fractures have about a 1 in 5 probability of containing naturally occurring arsenic above 10 parts per billion. In addition, wells within short distances (~50 feet) can present very different water quality because of our highly fractured bedrock. Arsenic in water has no color or odor, even when present at elevated levels. Therefore, the only way to determine the arsenic level in your well water is by testing.

From 1975 until 2001, the federal maximum contaminant limit (MCL) for arsenic in water supplied by public water systems was 50 parts per billion, because the health effects of exposure to lower concentrations was not recognized. Based on an exhaustive review of the new information about arsenic’s health effects, in January 2001 EPA established a goal of zero arsenic in drinking water. At the same time, EPA adopted an enforceable MCL of 10 parts per billion (ppb) based on balancing treatment costs and public health benefits. Studies have shown that chronic or repeated ingestion of water with arsenic over a person’s lifetime is associated with increased risk of cancer (of the skin, bladder, lung, kidney, nasal passages, liver or prostate) and non-cancerous effects (diabetes, cardiovascular, immunological and neurological disorders). The same studies found that dermal absorption (skin exposure) of arsenic is not a significant exposure path; therefore, washing and bathing do not pose a known risk to human health.²⁴

²² Radon is a radioactive gas that you cannot see, taste or smell. It can move up through the ground and into a home through cracks and holes in the foundation. Radon can also get into indoor air when released from tap water from showering, washing dishes, and other household activities. It is a known human carcinogen. Breathing radon can lead to lung cancer. Drinking water containing radon may cause an increased risk of stomach cancer. Our radon analysis of 1100 pCi/l was found at the well site which is no longer regularly used to supply potable water into the distribution system.

²³ EPA. Arsenic in Drinking Water. (http://water.epa.gov/lawsregs/rulesregs/sdwa/arsenic/index.cfm)

National Flood Insurance Program (NFIP)

The Office of Energy & Planning (OEP) administers and coordinates the State’s role in the National Flood Insurance Program (NFIP). The NFIP is a Federal program administered by the Federal Emergency Management Agency (FEMA) that allows property owners in participating communities to purchase insurance protection against losses from flooding. Communities can voluntarily participate in the NFIP by making an agreement with FEMA and adopting and enforcing floodplain regulations to reduce the flood risks of new construction in FEMA’s designated special flood hazard areas.

Currently 217 communities (92 percent) that participate in the NFIP have adopted at least the minimum standards of the NFIP, which regulate development in the 100-year floodplain. The regulations mitigate flood damage by requiring new and substantially improved structures to be built or flood proofed to, or

Somersworth Flood Insurance Program (NFIP) Status

Somersworth has been a member of the National Flood Insurance Program (NFIP) since August 16, 1982. The City does have portions of land in the 100-year floodplain along Tates Brooks, Peters Marsh Brook, and the Salmon Falls River. There is also limited floodplain along a smaller stream feeding into Lily Pond and around Willand Pond. There are limited structures within this floodplain according to available GIS Flood Insurance Rate Map (FIRM – dated May 17, 2005) data and aerial imagery.

According to FEMA’s Community Information System (as of 4/16/2015) Somersworth is listed as having 12 total policies (seven are single family homes, two are 2-4 family, one is all other residential, and two non-residential) in the floodplain hazard area and has had 2 repetitive loss claims. The two repetitive loss claims were from the same residential building. Ten of those policies are preferred risk and are not required. Preferred risk offers policies for buildings that are located in moderate-to-low areas (B, C, and X Zones).

Table 2.7: Somersworth Insurance Zone Policies

<table>
<thead>
<tr>
<th>Occupancy</th>
<th>Policies in Force</th>
<th>Premium</th>
<th>Insurance in Force</th>
<th>Number of Closed Paid Losses</th>
<th>$ of Closed Paid Losses</th>
<th>Adjustment Expense</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Family</td>
<td>7</td>
<td>$2,640</td>
<td>$1,902,000</td>
<td>2</td>
<td>$13,749.00</td>
<td>$970.00</td>
</tr>
<tr>
<td>2-4 Family</td>
<td>2</td>
<td>$493</td>
<td>$358,000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>All Other Residential</td>
<td>1</td>
<td>$941</td>
<td>$500,000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Non-Residential</td>
<td>2</td>
<td>$7,168</td>
<td>$1,050,000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td>$11,242</td>
<td>$3,810,000</td>
<td>2</td>
<td>$13,749.00</td>
<td>$970.00</td>
</tr>
</tbody>
</table>

The Strafford County Flood Insurance Study (FIS) investigates the existence and severity of flood hazards, which was revised countrywide FIS effective date: September 30, 2015.
In order to remain NFIP compliant, Somersworth has implemented a number of actions including:

- The replacement of specific vulnerable culverts to allow more freeboard and accommodate higher peak flows. Engineering also included elevating the super-structure of the bridge.
 - Rocky Hill Road
 - Tates Brook Road
- Drainage and culvert maintenance.
 - Conducting clean outs on Memorial Drive and Cemetery Road
 - Repair of Rocky Hill Road culvert
 - Catch basin cleaning
- Plans to replace the Maple Street culvert, which would include the replacement of the existing stone box culvert that conveys an unnamed stream under Maple Street. The culvert is in poor condition and will be replaced with a new corrugated metal pipe arch culvert. This project will also include the replacement of sections of existing utilities, installation of guard rails, and site restoration.
- Upgrades to drainage system in the downtown
- The adoption of low-impact development standards (2012) in the City’s site-plan regulations
- Hosting a workshop with Appledore engineering on stormwater regulations, which was presented to the Planning Board and televised on TV
- Using the culvert inventory developed by Strafford Regional Planning Commission to assist in the City’s replacement and prioritization process
- The city is currently working with FEMA on updating their existing floodplain maps as part of FEMA Discovery project, which will officially be adopted by the City Council in the next few years.

Road Damage during flood event
Photo Credit: Bob Belmore, City of Somersworth
Chapter III: History and Demographics

Introduction

This territory was first settled about 1650 when it was part of Dover. It was made a separate parish in 1729, called Summersworth. In 1753, residents petitioned Governor Benning Wentworth for a separate township. The town was incorporated as Somersworth in 1754. In 1849, the town was divided nearly in half when the southern portion was incorporated as Rollinsford. Somersworth was incorporated as a city in 1893. Situated on the Salmon River, Somersworth has been home to many gristmills, sawmills, and cotton and woolen making establishments.

According to the Economic & Labor Market Information Bureau, population change for Somersworth totaled 3,251 over 53 years, from 8,529 in 1960 to 11,780 in 2013. The largest decennial percent change was a 15 percent increase between 1970 and 1980; the smallest, a two percent increase between 2000 and 2010. The 2013 Census estimate for Somersworth was 11,780 residents, which ranked 25th among New Hampshire's incorporated cities and towns.

Historical Population Growth

Historically, Somersworth (and much of the Strafford Planning Region and New Hampshire) experienced rapid population growth beginning in the 1960s and continuing through 1990. In the past two decades however, population growth rate has slowed. In fact, Somersworth’s population saw a growth of only about 500 residents in the two decades between 1990 and 2010. In the three decades between 1960 and 1990, Somersworth’s population grew at an average rate of 11%. In the two decades between 1990 and 2010, the rate of change was just 2%.

<table>
<thead>
<tr>
<th>Year</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960</td>
<td>8,529</td>
</tr>
<tr>
<td>1970</td>
<td>9,026</td>
</tr>
<tr>
<td>1980</td>
<td>10,350</td>
</tr>
<tr>
<td>1990</td>
<td>11,249</td>
</tr>
<tr>
<td>2000</td>
<td>11,477</td>
</tr>
<tr>
<td>2010</td>
<td>11,766</td>
</tr>
<tr>
<td>2020</td>
<td>11,390</td>
</tr>
<tr>
<td>2030</td>
<td>11,892</td>
</tr>
<tr>
<td>2040</td>
<td>12,186</td>
</tr>
</tbody>
</table>

Somersworth Historic and Projected Population
Source: Census Bureau, NHOEP, RLS, RPC’s
Project Population Change

National population projections by the Census Bureau suggest that the United States will reach a population of approximately 380 million by 2040 (an 18% overall population growth). Although the Stafford Planning Region is not expected to grow on pace with the national rate, it is expected to grow by close to 10%, a significantly higher rate than projected for the state of New Hampshire (7.2%). Population projections completed by the New Hampshire Office of Energy and Planning and the state’s Regional Planning Commissions, suggest that the city of Somersworth can expect an overall growth in population of 4% in the 30-year period between 2010 and 2040.

Migration

Data suggest that fewer New Hampshire residents are leaving the State of New Hampshire. Since 2005, the peak year of outmigration between 2000 and 2010, there has been a 17% decrease in residents exiting the state. Unfortunately, New Hampshire is also experiencing a declining rate of in-migration, meaning that fewer individuals are coming into the state.

Aging

Somersworth, like so many communities in the region, experienced a significant increase in its 65 and older population between 2000 and 2010. This trend, dubbed the ‘silver tsunami’ by many demographers, is occurring across both the state and much of the New England and is a product of aging Baby-Boom and Generation X populations.

In the whitepaper series *The Two New Hampshires: What does it mean?*, Ross Gittell addresses the aging population, and how concentrations of older age cohorts vary across the state. In the report Gittell defines two New Hampshires, rural and metro. Rural NH includes Cheshire, Sullivan, Belknap, Carroll, Grafton, and Coos Counties, while Metro NH includes Rockingham, Hillsborough, Strafford and Merrimack Counties. As Gittell notes, Rural NH has a far older population (median age) than Metro NH, and if this was its own state it would be the second oldest in the nation. Even Metro NH, if considered by itself, would be older than Massachusetts, Connecticut, Rhode Island, and Vermont.

Population and Age

While data show the region growing at a faster rate than the state over the next 25 years, the slowed growth rate beginning in 1990 has, and will continue to have, an effect on the region. As the regional population ages, and in-migration continues to decrease, the percentage of school age children is declining. Out of the 161 districts in the state, 130 experienced a decline in enrollment between 2000 and 2010.

The aging population, combined with a decrease in population ages 18 to 55, may result in a labor force shortage in coming years. Additionally, a trend known as ‘brain drain’, the emigration of highly skilled or trained individuals to other states, could have potentially negative impacts on local, regional and state economic systems.
With the expected increase in demand for health care, assisted living facilities, and nursing home capacity, and the potential for a smaller labor force, a care-provider shortage may emerge. Local governments will likely need to create programs and strategies in order to provide adequate health and social services for increased numbers of aging seniors.

Housing

In the period between 1990 and 2010, Somersworth experienced an increase of approximately 250 total housing units. Occupancy rates have decreased over time, ranging from 93% in 1990, up to 97% in 2000, and down slightly to 95% in 2010.

As of 2010, Somersworth’s occupied housing units are roughly 60% owner-occupied and 40% renter occupied. Somersworth offers a significant amount of lower-cost rental housing options. The city exhibits a 5% vacancy rate, which is comparable to other adjacent communities. With moderate population growth projected over the coming 3 decades, limited new housing unit development is expected.

Table 3.1: Somersworth Housing Trends

<table>
<thead>
<tr>
<th></th>
<th>Total Housing Units</th>
<th>Occupied Housing Units</th>
<th>Owner-Occupied Housing Units</th>
<th>Renter-Occupied Housing Units</th>
<th>Vacant Housing Units</th>
<th>Occupancy Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>4719</td>
<td>4374</td>
<td>2549</td>
<td>1825</td>
<td>345</td>
<td>93%</td>
</tr>
<tr>
<td>2000</td>
<td>4841</td>
<td>4687</td>
<td>2659</td>
<td>2028</td>
<td>154</td>
<td>97%</td>
</tr>
<tr>
<td>2010</td>
<td>4970</td>
<td>4739</td>
<td>2797</td>
<td>1942</td>
<td>231</td>
<td>95%</td>
</tr>
</tbody>
</table>

Source: US Census Bureau

Building permit trend data suggest that Somersworth was particularly heavily impacted by the recession of the 2000’s. In the 7 year period between 2000 and 2007, the City granted 421 net building permits. In the 6 years following, only 63 total permits were given. This is a sign of not only the economic implications of the recession, but also stagnating population growth that has affected nearly all New Hampshire communities.
Over the course of the last thirteen years, Somersworth has seen steady and significant growth, albeit not in the three to four; development includes residential, commercial, and industrial expansion. Growth has occurred largely around a few growth centers. Most residential development is occurring along the Dover border near the Spaulding Turnpike, although other areas of development include the area of Rocky Hill Road near the Rochester border. Commercial and industrial development has been centered downtown and along the Route 108 and Route 9 (High Street) corridors.

To the best of the committee’s knowledge, development in hazard prone areas has not increased and the city will use this Plan as a guide to determine where past hazards have been documented and try to steer potential development away from these hazard areas. The planning committee used the best available data to describe historic, current, and future development trends.
Chapter IV: Critical Infrastructure & Key Resources (CI/KR)

With team brainstorming, Critical Facilities and Key Resources (CI/KR) within Somersworth were identified and mapped for the purpose of this plan. Facilities located in adjacent municipalities were not mapped.

Table 4.1: Emergency Response Facilities (ERF)

<table>
<thead>
<tr>
<th>Facility</th>
<th>Type of Facility</th>
<th>Address</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Police Station</td>
<td>Emergency Operations Center (EOC)</td>
<td>12 Lilac Lane</td>
<td>603-692-3131</td>
</tr>
<tr>
<td>Idlehurst Elementary School</td>
<td>Backup EOC</td>
<td>42 Stackpole Road</td>
<td>603-692-2435</td>
</tr>
<tr>
<td>Central Fire Station</td>
<td>Emergency Response</td>
<td>195 Maple Street</td>
<td>603-692-3457</td>
</tr>
<tr>
<td>City Hall</td>
<td>Emergency Response</td>
<td>1 Government Way</td>
<td>603-692-4262</td>
</tr>
<tr>
<td>Public Works</td>
<td>Emergency Response</td>
<td>18 Lilac Lane</td>
<td>603-692-4266</td>
</tr>
<tr>
<td>American Ambulance</td>
<td>Emergency Response</td>
<td>183 Route 108</td>
<td>603-480-5600</td>
</tr>
<tr>
<td>Optima</td>
<td>Emergency Fuel</td>
<td>11 Walton’s Way & High St.</td>
<td>603-692-6451</td>
</tr>
<tr>
<td>Cumberland Farms</td>
<td>Emergency Fuel</td>
<td>258 High Street</td>
<td>603-692-3918</td>
</tr>
<tr>
<td>Shell</td>
<td>Emergency Fuel</td>
<td>1 Long Hill Road (Dover)</td>
<td>603-742-1476</td>
</tr>
<tr>
<td>Monster Gas</td>
<td>Emergency Fuel</td>
<td>495 High St./Tri-City Plaza Rd.</td>
<td></td>
</tr>
<tr>
<td>BP Gas</td>
<td>Emergency Fuel</td>
<td>463 High Street</td>
<td>603-743-4200</td>
</tr>
<tr>
<td>Irving</td>
<td>Emergency Fuel</td>
<td>425 High St. & Commercial Dr.</td>
<td>603-817-3669</td>
</tr>
<tr>
<td>Irving</td>
<td>Emergency Fuel</td>
<td>144 Route 108</td>
<td>603-343-4560</td>
</tr>
<tr>
<td>Mobil</td>
<td>Emergency Fuel</td>
<td>196 Tri-City Plaza & High St.</td>
<td>603-740-9410</td>
</tr>
<tr>
<td>Gulf</td>
<td>Emergency Fuel</td>
<td>420 Route 108/Haven Hill Rd.</td>
<td>603-692-6625</td>
</tr>
</tbody>
</table>

Evacuation Routes (localized only)

<table>
<thead>
<tr>
<th>Route</th>
<th>Evacuation Route</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Street</td>
<td>High Street</td>
<td>N/a</td>
</tr>
<tr>
<td>West High Street</td>
<td>West High Street</td>
<td>N/a</td>
</tr>
<tr>
<td>Green Street</td>
<td>Green Street</td>
<td>N/a</td>
</tr>
<tr>
<td>Main Street</td>
<td>Main Street</td>
<td>N/a</td>
</tr>
<tr>
<td>Route 108</td>
<td>Route 108</td>
<td>N/a</td>
</tr>
</tbody>
</table>

Telephone Facilities

<table>
<thead>
<tr>
<th>Telephone Facilities</th>
<th>Communication Function</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fairpoint Switch Station</td>
<td>High Street</td>
<td>N/a</td>
</tr>
<tr>
<td>Cell Towers</td>
<td>45 Grand Street</td>
<td>N/a</td>
</tr>
</tbody>
</table>
Multi-Hazard Mitigation Plan Update 2016
City of Somersworth, New Hampshire

| Bridges |
|------------------|------------------|------------------|
| **Somersworth #078/124** (Somersworth) | **Salmon Falls Road over Salmon Falls River** | N/a |
| **Somersworth #101/114** (Somersworth) | **NH9/NH236 over Salmon Falls River** | N/a |
| **Somersworth #130/099** (Somersworth) | **Buffumsville Road over Salmon Falls River** | N/a |

Table 4.2: Non-Emergency Response Facilities (NERF)
NERF's are facilities that although critical, not necessary for the immediate emergency response effort; some hazardous material facilities are also included

<table>
<thead>
<tr>
<th>Facility</th>
<th>Type of Facility</th>
<th>Address</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wastewater Plan</td>
<td>Sewage Treatment Plant</td>
<td>99 Buffumsville Road</td>
<td>603-692-2418</td>
</tr>
<tr>
<td>Water Treatment Plant</td>
<td>Water Treatment Plant</td>
<td>9 Wells Street</td>
<td>603-692-2268</td>
</tr>
<tr>
<td>City Well</td>
<td>Secondary Water Supply</td>
<td>Rocky Hill Road</td>
<td>N/a</td>
</tr>
<tr>
<td>Water Tower</td>
<td>Water Tower</td>
<td>Rocky Hill Road</td>
<td>N/a</td>
</tr>
<tr>
<td>Water Tower</td>
<td>Water Tower</td>
<td>Hamilton/Grand Street</td>
<td>N/a</td>
</tr>
<tr>
<td>Electric Transformer</td>
<td>Power Substation</td>
<td>352 Main Street</td>
<td>N/a</td>
</tr>
<tr>
<td>Electric Transformer</td>
<td>Power Substation</td>
<td>Tates Brook</td>
<td>N/a</td>
</tr>
<tr>
<td>Electric Transformer</td>
<td>Power Substation</td>
<td>High Street/Walmart</td>
<td>N/a</td>
</tr>
<tr>
<td>Pump Station</td>
<td>Pump Station</td>
<td>445 Main Street</td>
<td>N/a</td>
</tr>
<tr>
<td>Pump Station</td>
<td>Pump Station</td>
<td>50 Blackwater Road</td>
<td>N/a</td>
</tr>
<tr>
<td>Pump Station</td>
<td>Pump Station</td>
<td>102 West High Road</td>
<td>N/a</td>
</tr>
<tr>
<td>Pump Station</td>
<td>Pump Station</td>
<td>31 Hawthorne Circle</td>
<td>N/a</td>
</tr>
<tr>
<td>Unitil Natural Gas Facility</td>
<td>Gas Distribution</td>
<td>77 Bartlett Ave</td>
<td>N/a</td>
</tr>
</tbody>
</table>

Table 4.3: Facilities and Populations to Protect (FPP)
FPP's are facilities that need to be protected because of their importance to the City and to residents who may need help during a hazardous event

<table>
<thead>
<tr>
<th>Facility</th>
<th>Type of Facility</th>
<th>Address</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schools, Churches, and Daycare Facilities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAU #56 Building</td>
<td>School District Office</td>
<td>51 West High Street</td>
<td>603-692-4450</td>
</tr>
<tr>
<td>Idlehurst Elementary</td>
<td>School</td>
<td>42 Stackpole Road</td>
<td>603-692-2435</td>
</tr>
</tbody>
</table>
Multi-Hazard Mitigation Plan Update 2016
City of Somersworth, New Hampshire

<table>
<thead>
<tr>
<th>Location</th>
<th>Type</th>
<th>Address</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maplewood Elementary School</td>
<td>School</td>
<td>51 West High Street</td>
<td>603-692-3331</td>
</tr>
<tr>
<td>Career Technical Center</td>
<td>School</td>
<td>11 Memorial Drive</td>
<td>603-692-2431</td>
</tr>
<tr>
<td>Middle School</td>
<td>School</td>
<td>18 Cemetery Road</td>
<td>603-692-2242</td>
</tr>
<tr>
<td>Tri-City Christian Academy</td>
<td>School</td>
<td>7 Memorial Drive</td>
<td>603-692-2126</td>
</tr>
<tr>
<td>Tri-City Christian Academy</td>
<td>School</td>
<td>150 West High Street</td>
<td>603-692-2093</td>
</tr>
<tr>
<td>Holy Trinity</td>
<td>Religious Facility</td>
<td>12 Rocky Hill</td>
<td>603-692-4737</td>
</tr>
<tr>
<td>St. Martin Church</td>
<td>Religious Facility</td>
<td>120 High Street</td>
<td>603-692-2172</td>
</tr>
<tr>
<td>First Parish Congregational</td>
<td>Religious Facility</td>
<td>176 West High Street</td>
<td>603-692-2057</td>
</tr>
<tr>
<td>Tri-City Covenant Church of Latter Day Saints</td>
<td>Religious Facility</td>
<td>150 West High Street</td>
<td>603-692-2093</td>
</tr>
<tr>
<td>First Baptist Church</td>
<td>Religious Facility</td>
<td>35 Tate’s Brook Road</td>
<td>603-692-5325</td>
</tr>
<tr>
<td>Greek Orthodox Church</td>
<td>Religious Facility</td>
<td>45 Tate’s Brook Road</td>
<td>N/a</td>
</tr>
<tr>
<td>Next Level Church</td>
<td>Religious Facility</td>
<td>436 Route 108</td>
<td>603-841-5781</td>
</tr>
<tr>
<td>Kid’s Culture</td>
<td>Daycare Facility</td>
<td>233 Route 108</td>
<td>603-841-7374</td>
</tr>
<tr>
<td>Little Folks School and Child Care</td>
<td>Daycare Facility</td>
<td>29 Lil-Nor Avenue</td>
<td>603-692-4706</td>
</tr>
<tr>
<td>Little Hands Learning Center</td>
<td>Daycare Facility</td>
<td>48-2 Wildflower Circle</td>
<td>603-692-5946</td>
</tr>
<tr>
<td>Little Steps Early Learning Center</td>
<td>Daycare Facility</td>
<td>7 Works Way</td>
<td>603-692-1845</td>
</tr>
<tr>
<td>The Works After School</td>
<td>Daycare Facility</td>
<td>23 Works Way</td>
<td>603-742-2163</td>
</tr>
<tr>
<td>Somersworth Early Learning Center</td>
<td>Daycare Facility</td>
<td>35 Bartlett Avenue</td>
<td>603-692-2081</td>
</tr>
<tr>
<td>Robert Filion Terrace</td>
<td>Elderly Housing</td>
<td>70-84 Washington Street/120-122 and 146 High Street</td>
<td>N/a</td>
</tr>
<tr>
<td>Queensbury Mill</td>
<td>Elderly Housing</td>
<td>1 Market Street</td>
<td>N/a</td>
</tr>
<tr>
<td>Preservation Park</td>
<td>Elderly Housing</td>
<td>163,185,195 Main Street</td>
<td>N/a</td>
</tr>
<tr>
<td>Edward Charpentier Apartments</td>
<td>Elderly Housing</td>
<td>28 Franklin Street</td>
<td>N/a</td>
</tr>
<tr>
<td>Albert Jack LaBonte Apartments (Maple Street Complex)</td>
<td>Elderly Housing</td>
<td>191 Maple Street</td>
<td>N/a</td>
</tr>
<tr>
<td>Parkview Terrace</td>
<td>Elderly Housing</td>
<td>10 Washington Street/Maple Street Extension</td>
<td>N/a</td>
</tr>
</tbody>
</table>

Assisted Living & Elderly Housing Facilities

<table>
<thead>
<tr>
<th>Location</th>
<th>Type</th>
<th>Address</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robert Filion Terrace</td>
<td>Elderly Housing</td>
<td>70-84 Washington Street/120-122 and 146 High Street</td>
<td>N/a</td>
</tr>
<tr>
<td>Queensbury Mill</td>
<td>Elderly Housing</td>
<td>1 Market Street</td>
<td>N/a</td>
</tr>
<tr>
<td>Preservation Park</td>
<td>Elderly Housing</td>
<td>163,185,195 Main Street</td>
<td>N/a</td>
</tr>
<tr>
<td>Edward Charpentier Apartments</td>
<td>Elderly Housing</td>
<td>28 Franklin Street</td>
<td>N/a</td>
</tr>
<tr>
<td>Albert Jack LaBonte Apartments (Maple Street Complex)</td>
<td>Elderly Housing</td>
<td>191 Maple Street</td>
<td>N/a</td>
</tr>
<tr>
<td>Parkview Terrace</td>
<td>Elderly Housing</td>
<td>10 Washington Street/Maple Street Extension</td>
<td>N/a</td>
</tr>
</tbody>
</table>

Historic Resources

<table>
<thead>
<tr>
<th>Location</th>
<th>Type</th>
<th>Address</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Library</td>
<td>Historic Facility</td>
<td>25 Main Street</td>
<td>603-692-4587</td>
</tr>
</tbody>
</table>
Table 4.4: Potential Resources (PR)

PR’s are potential resources that could be helpful for emergency response in case of a hazardous event.

<table>
<thead>
<tr>
<th>Facility</th>
<th>Type of Facility</th>
<th>Address</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial & Economic Impact Area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcara</td>
<td>Industrial</td>
<td>130 Main Street</td>
<td>603-692-2100</td>
</tr>
<tr>
<td>Velcro USA Inc.</td>
<td>Industrial</td>
<td>330 Route 108</td>
<td>603-692-0398</td>
</tr>
<tr>
<td>Walmart</td>
<td>Retail</td>
<td>59 Walton’s Way</td>
<td>603-692-6346</td>
</tr>
<tr>
<td>Favorite Foods</td>
<td>Retail</td>
<td>Interstate Drive</td>
<td>603-692-4990</td>
</tr>
<tr>
<td>Target</td>
<td>Retail</td>
<td>11 Andrews Road</td>
<td>603-692-6750</td>
</tr>
<tr>
<td>Home Depot</td>
<td>Retail</td>
<td>12 Commercial Drive</td>
<td>603-692-0007</td>
</tr>
<tr>
<td>Fortier & Son Inc.</td>
<td>Propane Fuel Distribution</td>
<td>216 Green Street</td>
<td>603-692-3595</td>
</tr>
<tr>
<td>Townsend Energy</td>
<td>Propane Fuel Distribution</td>
<td>35 Centre Road</td>
<td>603-692-3022</td>
</tr>
<tr>
<td>Turgeon’s Inc.</td>
<td>Construction Company</td>
<td>37 Indigo Hill Road</td>
<td>603-692-4962</td>
</tr>
<tr>
<td>Miscellaneous Facilities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Guard Armory</td>
<td>Armory</td>
<td>15 Blackwater Road</td>
<td>N/a</td>
</tr>
<tr>
<td>US Army Reserve</td>
<td>Army Reserve</td>
<td>Route 108</td>
<td>N/a</td>
</tr>
<tr>
<td>Somersworth School District (SAU 56)</td>
<td>Bus Transportation</td>
<td>51 West High Street</td>
<td>603-692-4450</td>
</tr>
<tr>
<td>First Student</td>
<td>Bus Transportation</td>
<td>121 Whitehouse Road</td>
<td>603-692-4406</td>
</tr>
<tr>
<td>Medical Facilities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seacoast Redi-care</td>
<td>Medical Office</td>
<td>396 High Street</td>
<td>603-692-6066</td>
</tr>
<tr>
<td>Somersworth Health Center</td>
<td>Medical Office</td>
<td>85 Main Street</td>
<td>603-692-6676</td>
</tr>
<tr>
<td>Rehab 3 at Marsh Brook</td>
<td>Medical Office</td>
<td>7 Marsh Brook Drive</td>
<td>603-749-6686</td>
</tr>
<tr>
<td>Avis Goodwin</td>
<td>Medical Office</td>
<td>311 Route 108</td>
<td>603-332-4249</td>
</tr>
<tr>
<td>Wentworth Surgery Center</td>
<td>Medical Office</td>
<td>6 Works Way</td>
<td>603-285-9288</td>
</tr>
<tr>
<td>Recreational Facilities (Indoor and Outdoor)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Martin Flanagan Community Center</td>
<td>Community Center</td>
<td>9 Bartlett Avenue</td>
<td>603-692-2864</td>
</tr>
<tr>
<td>The Works</td>
<td>Health Club</td>
<td>23 Works Way</td>
<td>603-742-2163</td>
</tr>
</tbody>
</table>
A Non-Menace Structure means a dam that is not a menace because it is in a location and of a size that failure of misoperation of the dam would not result in probable loss of life or loss to property.

A Low Hazard Structure means a dam that has a low hazard potential because it is in a location and of a size that failure or misoperation of the dam would result in no possible loss of life and low economic loss to structures/property.

A High Hazard Structure means a dam that has a high hazard potential because it is in a location and of a size that failure or misoperation of the dam would result in probable loss of human life.

Table 4.5: Water Resources (PR)

<table>
<thead>
<tr>
<th>Facility</th>
<th>Type of Facility</th>
<th>Address</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oaks Golf Course Pond</td>
<td>Non-Menacing</td>
<td>Unnamed Brook</td>
<td>N/a</td>
</tr>
<tr>
<td>Salmon Falls River Dam II</td>
<td>Non-Menacing</td>
<td>Salmon Falls River</td>
<td>N/a</td>
</tr>
<tr>
<td>LRSW Leachate Sump Pond Dam</td>
<td>Non-Menacing</td>
<td>Runoff</td>
<td>N/a</td>
</tr>
<tr>
<td>Willand Commons Plaza Detention Pond</td>
<td>Non-Menacing</td>
<td>Runoff</td>
<td>N/a</td>
</tr>
<tr>
<td>Indigo Hill Dam</td>
<td>Non-Menacing</td>
<td>Tributary to Twombley Brook</td>
<td>N/a</td>
</tr>
<tr>
<td>Fish Pond Dam</td>
<td>Non-Menacing</td>
<td>Unnamed Stream</td>
<td>N/a</td>
</tr>
<tr>
<td>Great Falls Upper Dam</td>
<td>Low Hazard</td>
<td>Salmon Falls River</td>
<td>N/a</td>
</tr>
<tr>
<td>Lower Great Falls Dam</td>
<td>High Hazard</td>
<td>Salmon Falls River</td>
<td>N/a</td>
</tr>
</tbody>
</table>

*Active Dams – As identified by the NHDES, Water Division
Chapter V: Multi-Hazard Effects in Somersworth

Identifying Vulnerable Structures

It is important to identify the critical facilities and other structures that are most likely to be damaged by hazards. In Somersworth, there was 14 CI/KR within the potential and past flood areas (PPFA) that were identified in the risk assessment for a potential loss value estimate of $50,290,861 at 100%.

Table 5.1: Critical Infrastructure & Key Resources

<table>
<thead>
<tr>
<th>Facility</th>
<th>Type of Hazard</th>
<th>100% of Structure/Building Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dams</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Great Falls Upper Dam (Low Hazard)</td>
<td>Flooding; Dam Breach Salmon Falls River</td>
<td>The Dam Bureau at NHDES has looked into assessing values for state-owned dams with marginal success. They considered bond ratings, market value, and construction costs. They also developed a formula that calculated the cubic feet of water impounded as a monetary value. Because dams serve different purposes (recreational, hydro-power), assessed values are hard to estimate and cannot be determined accurately.</td>
</tr>
<tr>
<td>Lower Great Falls Dam (High Hazard)</td>
<td>Flooding; Dam Breach Salmon Falls River</td>
<td></td>
</tr>
<tr>
<td>Bridges</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salmon Falls Road over Salmon Falls River</td>
<td>Flooding</td>
<td>(120 x 40 x $1,000)</td>
</tr>
<tr>
<td>NH9/NH236 over Salmon Falls River</td>
<td>Flooding</td>
<td>(114 x 60 x $1,000)</td>
</tr>
<tr>
<td>Buffumsville Road over Salmon Falls River</td>
<td>Flooding & Dam Failure</td>
<td>(118 X 30 x $1,000)</td>
</tr>
<tr>
<td>Emergency Response Facilities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Police Station</td>
<td>Flooding</td>
<td></td>
</tr>
<tr>
<td>Public Works/Highway Division</td>
<td>Flooding</td>
<td></td>
</tr>
</tbody>
</table>

25 The approximate assessed value for the bridges was calculated by multiplying $1,000.00 per square foot of bridge. This estimate was provided by the Bridge Design Bureau at NHDOT and includes all cost (engineering, consulting and in-house design, construction, etc.) to build a new bridge.
Non-Emergency Response Facilities

<table>
<thead>
<tr>
<th>Facility</th>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>City Well</td>
<td>Flooding</td>
<td>$61,800</td>
</tr>
<tr>
<td>Water Treatment Facility</td>
<td>Flooding</td>
<td>$9,386,418</td>
</tr>
<tr>
<td>Wastewater Treatment Facility</td>
<td>Flooding</td>
<td>$19,755,178</td>
</tr>
<tr>
<td>Pump Station (Blackwater Road)</td>
<td>Flooding</td>
<td>$1,023,128</td>
</tr>
</tbody>
</table>

Potential Resources

<table>
<thead>
<tr>
<th>Facility</th>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home Depot</td>
<td>Flooding</td>
<td>$5,358,000</td>
</tr>
<tr>
<td>Target</td>
<td>Flooding</td>
<td>$6,657,600</td>
</tr>
</tbody>
</table>

Facilities and Populations to Protect

<table>
<thead>
<tr>
<th>Facility</th>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tri-City Christian Academy/Covenant</td>
<td>Flooding</td>
<td>$2,207,600</td>
</tr>
</tbody>
</table>

TOTAL | **$50,290,861**

Note: The assessed value for each structure was provided by the city’s assessing department.
Calculating Potential Loss

It is difficult to ascertain the amount of damage that could be caused by a natural or man-made hazard because the damage will depend on the hazard’s extent and severity, making each hazard event somewhat unique. Therefore, we have used the assumption that hazards that impact structures could result in damage 0-1%, 1-5%, or 5-10% of Somersworth’s structures, depending on the nature of the hazard, whether or not the hazard is localized, and its economic impact.

Table 5.2: Assessed Value of All Structures

<table>
<thead>
<tr>
<th>Economic Loss</th>
<th>Low 1% damage</th>
<th>Medium 5% damage</th>
<th>High 10% damage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>$577,351,735</td>
<td>$5,773,517</td>
<td>$28,867,587</td>
</tr>
<tr>
<td>Manufactured</td>
<td>$13,256,300</td>
<td>$132,563</td>
<td>$662,815</td>
</tr>
<tr>
<td>Commercial</td>
<td>$230,627,160</td>
<td>$2,306,272</td>
<td>$11,531,358</td>
</tr>
<tr>
<td>Tax Exempt</td>
<td>$3,189,000</td>
<td>$31,890</td>
<td>$159,450</td>
</tr>
<tr>
<td>Total</td>
<td>$824,424,195</td>
<td>$8,244,242</td>
<td>$41,221,210</td>
</tr>
</tbody>
</table>

Based on this assumption, the potential loss from any of the identified hazards would range from $0 to $8,244,242 or $8,244,242 to $41,221,210 or $41,221,210 to $82,442,420 based on the 2014 Somersworth City valuation, which lists the assessed value of all structures in Somersworth to be $824,424,195 (see chart above).

In order to stay consistent, the planning committee made the decision to use the results derived from the hazard vulnerability assessment tool (Table 2.3). There was consensus that the overall threat rankings (severity x probability) associated with each hazard were an equal indicator to the percentage of damage and were therefore used to determine the potential loss.

Human loss of life was not included in the potential loss estimates, but could be expected to occur, depending on the severity and type of the hazard.

Flooding (Heavy Rains and Inland/Riverine Flooding).................................$41,221,210 to $82,442,420

Inland floods are most likely to occur in the spring due to the increase in rainfall and melting of snow; however floods can occur at any time of year. A sudden thaw in the winter or a major downpour in the summer can cause flooding because there is suddenly a large amount of water in one place with nowhere for it to go. Although Somersworth has limited structures within the 100-year floodplain zone, it was discussed that there are areas in the city that have experienced repeated flooding with significant damage to both residential properties and critical infrastructure.

Ice Jam...$8,244,242 to $41,221,210

An ice jam is an accumulation of ice in a river that restricts water flow and may cause backwater that floods low-lying areas upstream from the jam. Areas below the ice jam can also be affected when the jam
releases, sending water and ice downstream. Damages resulting from ice jams can affect homes, buildings, roads, and riverine structures; block hydropower and water supply intakes; and decrease downstream discharge.²⁶

Dam Failure (Breach at Lower Great Falls Dam)…………………………………………..$8,244,242 to $41,221,210

Most of the dams in Somersworth are non-menacing; there is only one low hazard and one high hazard dam, which means they have a relatively low/medium hazard potential because of the size and location. Failure or misoperation of any number of these dams would represent a significant hazard potential and economic loss to structures and property but no probable loss of lives. The Lower Great Falls has a high hazard potential that would result in probable loss of human life due to water levels and velocity, including damage to the downtown area.

Hurricane & Tropical Storms……………………………………………………………………..$41,221,210 to $82,442,420

Somersworth will likely experience impact from a storm of tropical origin in the foreseeable future, but the level of losses would vary with the exact track of such a storm. Somersworth is considered an inland community, however may be vulnerable to storm surge in some areas. High winds from a storm would be the factor most likely to cause damage. The Hurricane of 1938, Hurricane Carol, Hurricane Diane, and Hurricane Sandy all caused some damage occurring to the utilities and municipal infrastructure. These storms caused power outages, damage to residential structures from high winds, and heavy rain. Hurricanes are rare in New Hampshire, but they should not be ruled out as a potential hazard. With projected sea level rise and the increased frequency of severe storm events, the impacts from these kinds of events have the potential to cause major issues the city will need to address moving forward.

Extreme Temperatures…………………………………………………………………………..$8,244,242 to $41,221,210

In New England, temperature extremes are quite common. Extreme heat events can be described as periods with high temperatures of 90°F or above. Elderly and very young populations are particularly susceptible to these events, even those of only single-day duration. Also, roads, railroads and other infrastructure can suffer significant damage during extended events. Characteristics of an extreme cold event in northern states include temperatures at or below zero for an extended period of time. According to the National Weather Service (NWS), extreme cold is a daily concern during the winter months for northern states. Losses would stem mostly from impacts to life safety—illness or death.

Wildfire………………………………………………………………………………………………….0 to $8,244,242

Wildfire is defined as an uncontrolled and rapidly spreading fire. They often occur during drought and when woody debris on the forest floor is readily available to fuel the fire. Between the storm events experienced since 2006, land use changes, and population growth, fire load conditions are similar to the conditions seen right before the 1947 forest fire (Rochester, NH) and thus a potential high threat.

Currently, there is an abundance of limbs and branches on the forest floor and the city may be susceptible to wildfire during drought; causes include but aren’t limited to: arson, lightning, and burning of debris.

Earthquake

An earthquake is a rapid shaking of the earth caused by the breaking and shifting of rock beneath the earth's surface. Earthquakes can cause buildings and bridges to collapse, disrupt gas, electric and phone lines, and often cause landslides, flash floods, fires, and avalanches. There have been just three earthquakes that registered a 5.50 or higher on the Richter scale in New Hampshire’s history. It is well documented that there are fault lines running throughout New Hampshire, but high magnitude earthquakes have not been frequent in New Hampshire history.

Landslide

Landslide risk in Somersworth is low. Approximately 0.3% (18.9 acres) of the land area has steep slopes greater or equal to 25%. Sufficient data was not available to determine what structures are in the steep slope areas, but the number is certainly quite small. Landslide incidence is very low in the region in general, so the losses from a landslide incident would be minimal, even more so on an annualized risk basis.

Severe Winter Weather

Heavy snowstorms typically occur from December through April. New England usually experiences at least one or two heavy snowstorms with varying degrees of severity each year. Power outages, extreme cold and impacts to infrastructure are all effects of winter storms that have been felt in Somersworth in the past. All of these impacts are a risk to the community, including isolation, especially of the elderly, and increased traffic accidents. Damage caused as a result of this type of hazard varies according to wind velocity, snow accumulation, duration and moisture content. Seasonal accumulation can also be as significant as an individual snowstorm. Winter snow and ice storms often cause trees to fall creating widespread power outages by downing power lines. Road closures are also often a result of snow accumulations, ice storms and downed power lines, although municipal staff is able to keep the city’s roads clear most of the time. Heavy snow and ice storms can also cause widespread damage to forested areas. The December 2008 ice storm knocked out power for as many as 400,000 customers throughout the State (five times larger than those who lost power in the ice storm of 1998, which was previously the most devastating storm on record). Ice storms could be expected to cause damage ranging from a few thousand dollars to several million, depending on the severity of the storm.

Tornado & Downburst

Tornadoes are relatively uncommon natural hazards in New Hampshire; on average, about six touch down each year. Damage largely depends on where the tornado strikes. If it were to strike an inhabited area, the impact could be severe. The probability that any highly valuable asset in particular would be hit is low; and the general magnitude of a tornado would likely be F2 or less, damages would be expected to be relatively low, with several assets of significant value impacted. Downburst activity is very prevalent.
Drought.. $0 to $8,244,242

A drought is defined as a long period of abnormally low precipitation, especially one that adversely affects growing or living conditions. They generally are not as damaging and disruptive as floods and are more difficult to define. A potential economic impact is the loss of revenue from the hydro-plant along the Salmon Falls River. The social and economic impact of a long-term drought has the potential to have a larger impact than in other communities in the Seacoast.

Drought effects in New Hampshire have tended to be moderated by the state's relatively large water supply and by its relatively sparse population; therefore, risk from drought, for now, seems low, even with a moderate probability of drought recurrence. The cost of drought is difficult to calculate, as any cost would primarily result from an associated fire risk and diminished water supply.

Severe Thunderstorms... $41,221,210 to $82,442,420

Severe lightning as a result of summer storms or as a residual effect from hurricanes have occurred in Somersworth. Due to the possibility of trees being toppled by lightning onto power lines and creating sparks and the fact that many of the buildings in Somersworth are considerably old, lightning is a significant disaster threat. Lightning could do damage to specific structures, injure or kill an individual but the direct damage would not be widespread. Power outages, high winds, train sparks, flash flooding, and other utility interruptions are common in thunderstorms in the region, so losses should be expected to occur relatively frequently.

Public Health Threats... $8,244,242 to $41,221,210

Public health threats not only include the possibility of an epidemic or pandemic, but also include problems such as radon, arsenic, and Lyme disease which could present a possible threat to the community. With the occurrence of worldwide pandemics such as SARS, H1N1 and Avian Flu, Somersworth could be susceptible to an epidemic and subsequent quarantine. Whether the threat is naturally occurring or not the city will have to address potential long-term health impacts in their future planning efforts.

Hazardous Material... $8,244,242 to $41,221,210

The possibility of vehicular accidents involving hazardous materials is identified as a hazard in Somersworth. The Spaulding Turnpike (Route 16) is a main highway from southern New Hampshire to the Lakes Region and the White Mountains. Traffic accidents occur on this highway regularly, and hazardous materials are routinely carried on this road. State Route 9 (High Street) connects the Spaulding Turnpike with the Berwicks in Maine, passing directly through downtown Somersworth, crossing both the Salmon Falls River and the New Hampshire North Coast railroad line, and continuing eastward into Berwick, Maine. Finally, state Route 108 is a major alternative road to the Spaulding
Turnpike in western Somersworth, connecting Dover and Rochester, New Hampshire. It is a major commercial corridor.

The NH North Coast rail line runs through Somersworth in the densely developed and populated downtown area, mostly carrying freight and Liquid Propane Gas “LPG” to Eastern Propane & Oil terminal in North Rochester. Transportation of chemicals and bio-hazardous materials to and from Canada or Maine by railroad or truck is a concern. The potential for derailments and accidents at rail crossings always exists.
Chapter VI: Multi-Hazard Goals and Existing Mitigation Strategies

All Hazard Mitigation Goals

Before identifying new mitigation actions to be implemented, the Team updated the following multi-hazard goals. These goals were based on the State of New Hampshire Multi-Hazard Mitigation Plan (2013) that was prepared and is maintained by HSEM.

Before identifying new mitigation actions to be implemented, the Team updated the following multi-hazard goals in order to stay consistent with State goals. These goals include:

- **Ensure the protection of the general population, citizens and guests of Somersworth, New Hampshire, before during and after a hazard.**

- **Protect existing properties and structures through mitigation activities.**

- **Provide resources to residents of Somersworth, when needed, to become more resilient to hazards that impact the city’s critical support services, critical facilities, infrastructure, economy, environment, historical & cultural treasures and private property.**

- **Support the Presidential Policy Directive (PPD-8) through prevention, mitigation, preparedness, response and recovery actions**

- **Work regionally to identify, introduce and implement cost effective hazard mitigation measures in order to accomplish the city’s goals.**

- **Develop and implement programs to promote hazard mitigation to protect infrastructure throughout the city to reduce liability with respect to natural and human-caused hazards generally.**

- **To address the challenges posed by climate change as they pertain to increasing risks in the city’s infrastructure and natural environment.**
Types of Mitigation Strategies Developed

The Hazard Mitigation Committee established an initial list of mitigation actions by conducting a brainstorming session. The Committee reviewed these objectives and concluded that, with some modification, the objectives would constitute a usable framework for identifying and categorizing potential mitigation actions.

The following list of mitigation categories and possible strategy ideas was compiled from a number of sources including FEMA, other Planning Commissions, and past Hazard Mitigation Plans. This list was used during a brainstorming session to discuss what issues there may be in City. Team involvement and the brainstorming sessions proved helpful in bringing out new ideas, better relationships and a more in depth knowledge of the community.

Gaps in Existing Measures

The planning committee identified a number of redundancies and gaps within their existing mitigation activities. When reviewing the 2011 Plan, the planning committee made the following revisions:

1. The NFPA 101 Life Safety and Fire Codes were updated from 2003 to 2009.
2. The enforcement responsibilities were all updated.
3. Two programs and policies were removed, including: a) information on minimum lot sizes found in the city’s zoning ordinance and b) state standards for building codes in manufactured homes and parks. The committees felt as though these were too specific and were no longer needed to be referenced in this plan.

Summary of Recommended Improvements

1. Whenever the state adopts the 2016 State Building Code, Somersworth will do the same. This also pertains to the Fire Codes (NFPA 2016).
2. Work with FEMA and NHOEP to ensure new FEMA floodplain maps are delineated over the course of the next 5 years.
3. Implement stormwater management strategies to help satisfy the new MS4 requirements.
4. Install emergency back-up generators at the public works facility and City Hall.

Existing Protection Matrix

The Somersworth Hazard Mitigation Planning Committee has developed the following table of existing programs, regulations, laws, etc. that are currently in place and either directly or indirectly provide loss prevention from natural hazards. This matrix, a summary of the preceding information, includes the type of existing program or activity (Column 1), a description of the existing strategy (Column 2), the type of hazard (Column 3), type of activity (Column 4), the area of city impacted (Column 5), the enforcement of the strategy (Column 6), the effectiveness of the strategy (Column 7), any changes in priority (Column 8), and the 2016 Update (Column 9).
Table 6.1: Existing Mitigation Strategies Matrix and Proposed Improvements

<table>
<thead>
<tr>
<th>Program</th>
<th>Description</th>
<th>Type of Hazard</th>
<th>Type of Activity</th>
<th>Area of City impacted</th>
<th>Enforcement</th>
<th>Effectiveness</th>
<th>Changes in Priority</th>
<th>2016 Update</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Code/Permits</td>
<td>Requires builder to obtain all permits prior to action.</td>
<td>Multi-hazard</td>
<td>Prevention</td>
<td>City-wide</td>
<td>Code Enforcement Officer(s)</td>
<td>Excellent</td>
<td>Completed Action</td>
<td>Somersworth follows the State Building Code (2009)</td>
</tr>
<tr>
<td>Elevation Certificates</td>
<td>An administrative tool of the NFIP, used by communities to verify and document building compliance with the community’s floodplain management regulations</td>
<td>Multi-hazard</td>
<td>Prevention</td>
<td>Potential Flood Areas</td>
<td>In order to be rated properly for flood insurance, a State-licensed professional is required to certify the elevation information</td>
<td>Excellent</td>
<td>Completed Action</td>
<td>This program continues to be administered to ensure that elevation certificates are properly filed, certified, and implemented.</td>
</tr>
<tr>
<td>Flood Hazard District</td>
<td>Local ordinance to regulate development in the FEMA floodplain.</td>
<td>Flooding</td>
<td>City-Planning</td>
<td>Potential flood areas per FIRM maps</td>
<td>Planning Board</td>
<td>Good</td>
<td>Deferred Action</td>
<td>Somersworth is in need of updated FEMA maps. The effective maps are dated May 17, 2005.</td>
</tr>
<tr>
<td>Groundwater Resource</td>
<td>Protect existing and potential groundwater supply and groundwater recharge areas</td>
<td>Drought</td>
<td>City-Planning</td>
<td>Aquifer areas</td>
<td>Planning Board</td>
<td>Excellent</td>
<td>Completed Action</td>
<td>Local regulations are reviewed and updated as necessary</td>
</tr>
<tr>
<td>Protection District</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riparian Buffer Ordinance</td>
<td>Protection of vegetation and soil in vicinity of wetlands</td>
<td>Flooding</td>
<td>City-Planning</td>
<td>Wetland areas</td>
<td>Planning Board</td>
<td>Excellent</td>
<td>Completed Action</td>
<td>Somersworth updated this ordinance in 2010 to include expanded setbacks on streams and brooks</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
<td>----------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-----------</td>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>Shoreland Protection Act</td>
<td>Establishes minimum standards for the subdivision, use, and development along the State’s larger water bodies</td>
<td>Flooding</td>
<td>City-Planning</td>
<td>Willand and Lily Ponds; Salmon Falls River with urban exemption</td>
<td>Planning Board</td>
<td>Good</td>
<td>Completed Action</td>
<td>Local regulations need to be in agreement with State standards</td>
</tr>
<tr>
<td>Best Management Practices</td>
<td>Required by State for stormwater management, sedimentation erosion control, site alteration, timber management, etc.</td>
<td>Multi-hazard</td>
<td>City-Planning</td>
<td>City-wide</td>
<td>Planning Board</td>
<td>Excellent</td>
<td>Completed Action</td>
<td>Somersworth updated their stormwater regulations in 2014</td>
</tr>
<tr>
<td>Road Design Standards</td>
<td>State minimum standards with additional subdivision and site plan regulations.</td>
<td>Multi-hazard</td>
<td>Prevention</td>
<td>City-wide</td>
<td>Public Works & NHDOT</td>
<td>Good</td>
<td>Deferred Action</td>
<td>Somersworth is currently developing new pavement management strategies</td>
</tr>
<tr>
<td>Mutual Aid</td>
<td>Mutual aid system with Police as authorized by RSA 48:11-A and 105:13.</td>
<td>Multi-hazard</td>
<td>Emergency Preparedness</td>
<td></td>
<td>Police Department</td>
<td>Excellent</td>
<td>Completed Action</td>
<td>Mutual aid is in place and agreements are renewed as necessary.</td>
</tr>
</tbody>
</table>

- Multi-hazard
- Riparian Buffer Ordinance
- Shoreland Protection Act
- Best Management Practices
- Road Design Standards
- Mutual Aid
Multi-Hazard Mitigation Plan Update 2016
City of Somersworth, New Hampshire

<table>
<thead>
<tr>
<th>Section</th>
<th>Details</th>
<th>Status</th>
<th>Action</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mutual Aid</td>
<td>Mutual aid system with Fire as authorized by RSA 154:30.</td>
<td>Excellent</td>
<td>Completed Action</td>
<td>Mutual aid is in place and agreements are renewed as necessary.</td>
</tr>
<tr>
<td>Mutual Aid</td>
<td>NH Public Works mutual aid program</td>
<td>Excellent</td>
<td>Completed Action</td>
<td>Mutual aid is in place and agreements are renewed as necessary.</td>
</tr>
<tr>
<td>Local Emergency Operations Plan (LEOP)</td>
<td>Defined notification procedures and actions that should be taken in different emergency situations. This was last updated in 2014</td>
<td>Excellent</td>
<td>Completed Action</td>
<td>The next update is scheduled for 2019.</td>
</tr>
<tr>
<td>Evacuation and Notification</td>
<td>Evacuation and notification procedures are defined in Somersworth’s LEOP.</td>
<td>Excellent</td>
<td>Completed Action</td>
<td>Completed in 2014. The next update is scheduled for 2019.</td>
</tr>
<tr>
<td>Emergency Back-up Power</td>
<td>There is back-up power at the Police Station, Fire Department, Housing Authority, Water and Wastewater facilities. There is a need for generators at Idlehurst Elementary.</td>
<td>Good</td>
<td>Deferred Action</td>
<td>There is a need for back-up power at the public works facility and city hall.</td>
</tr>
<tr>
<td>Emergency Shelter</td>
<td>Share a regional shelter with Rochester during minor events.</td>
<td>Excellent</td>
<td>Completed Action</td>
<td>Somersworth also used the Flanagan Center and Idlehurst during emergency events.</td>
</tr>
</tbody>
</table>
Multi-Hazard Mitigation Plan Update 2016

City of Somersworth, New Hampshire

<table>
<thead>
<tr>
<th>Tree Maintenance in Right of Way</th>
<th>Eversource and NHDOT have tree maintenance programs to clear trees and tree limbs from power lines and roadways</th>
<th>Multi-hazard</th>
<th>Prevention</th>
<th>City-wide</th>
<th>Eversource, NHDOT, and Public Works</th>
<th>Good</th>
<th>Completed Action</th>
<th>NHDOT only removes tree limbs upon request.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storm Drain Maintenance</td>
<td>Storm drain are maintained and upgraded on an as needed basis</td>
<td>Flooding</td>
<td>City Planning</td>
<td>City-wide</td>
<td>Public Works</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Good</td>
<td>Completed Action</td>
<td>Somersworth has increased efforts of catch basin clean – twice a year during the spring and fall</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flood Gauge</td>
<td>Measures level of Salmon Falls River</td>
<td>Flooding</td>
<td>Prevention</td>
<td>Water facility on Salmon Falls River</td>
<td>Water Facilities Operator</td>
<td>Good</td>
<td>Completed Action</td>
<td>System is in place to assist during flooding events</td>
</tr>
<tr>
<td>Flood Warning System</td>
<td>Computer linked to flood gauges notifies operator of water levels</td>
<td>Flooding</td>
<td>Prevention</td>
<td>Water facility on Salmon Falls River</td>
<td>Water Facilities Operator</td>
<td>Good</td>
<td>Completed Action</td>
<td>The EMD will look into whether or not the data is available by computer</td>
</tr>
<tr>
<td>State Dam Program</td>
<td>Dam inspections completed by NHDES dam maintenance and safety program</td>
<td>Dam Failure & Flooding</td>
<td>Prevention</td>
<td>High hazard dams</td>
<td>State</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Education</td>
<td>City newsletter, email blasts, website, blackboard connect, Nixel, reverse 911, and public access channel 22 & 95</td>
<td>Multi-hazard</td>
<td>Education & Outreach</td>
<td>City-wide</td>
<td>Emergency Management Director</td>
<td>Excellent</td>
<td>Completed Action</td>
<td>Somersworth added blackboard connect, Nixel, and reverse 911 to outreach</td>
</tr>
</tbody>
</table>
Effectiveness:

- Excellent – The existing program works as intended and is exceeding its goals
- Good – The existing program works as intended and meets its goals
- Average – The existing program does not work as intended and/or does not meet its goals
- Poor – this existing program is negatively impacting the community

Changes in Priority:

- Completed Action: This program continues to be an implemented mitigation action item since the last updated plan was developed
- Deferred Action – At the time of developing this plan, more time is required for completion
- Removed Action – This existing program is no longer a priority to the City

2016 Update:

- Recommendations for improvement
Chapter VII: Prior Mitigation Plan(s)

Dates(s) of Prior Plan(s)

Somersworth participated in two prior mitigation plans that were developed by the Somersworth Hazard Mitigation Planning Committee and adopted by the City Council in 2004 and 2010. This Plan, the “Multi-Hazard Mitigation Plan Update 2016” is the most recent version.

All Committee members agreed that the ranking of the actions as presented below was valid as far as it went; however, they felt that this scoring scheme does not consider the practicality, relative cost, immediacy of need, or potential mitigation gain associated with each of the actions very well.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Proposed Mitigation Action</th>
<th>2016 Update</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Emergency Vehicles Command, Fire Department</td>
<td>Completed. Somersworth received a state Emergency Management grant for $6,000 to upgrade the city’s Emergency Plan and included a laptop as part of this award. A federal Homeland Security grant secured from the State Fire Academy to provide advanced instruction in Fire Officer Development, Hazardous Materials training, Collapse Rescue, Swift Water Rescue and Technical Rescue was completed. FEMA awarded us $41,982 for emergency equipment for the Department. NH Homeland Security awarded $36,500 to equip a new COMMAND vehicle with radios, emergency lighting and other equipment. The city received a federal Emergency Management grant for $99,000 to hire more firefighters. The grant paid for all costs associated with recruiting, equipping, and training new call firefighters. It also provided funding for computers, an exterior sign at the Maple Street fire station, fire education courses, and EMT training for several new hires.</td>
</tr>
<tr>
<td>2</td>
<td>Update Digital Orthophotography- integrate into city system</td>
<td>Completed. The most up-to-date digital orthophotography is from 2010. It has been integrated into Arc View. All municipal staff has access to the data, which is used for general planning purposes. New imagery will become available in early 2016. Once received, it will be integrated into the city’s system.</td>
</tr>
<tr>
<td>3</td>
<td>Flood Prevention on Rocky Hill Road (3 culverts) and Blackwater Road (1 culvert)</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Raise road and replace four culverts to increase water flow and reduce flooding</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Completed/Ongoing action. The city has replaced one culvert on Rocky Hill Road. This project included the removal of an existing 48” x 54” oval culvert and replaced it with a 103” x 71” x 47” pipe arch culvert within the same general footprint under an existing roadway.

The city continues to investigate the cost and feasibility of replacing the other two culverts on Rocky Hill Road and the one identified on Blackwater Road.

The committee stated that neither of these culverts would result in raising the road at any of these locations. The area identified that would need this type of engineering would be on Salmon Falls Road.

<table>
<thead>
<tr>
<th>4</th>
<th>Sump pumps needed for structures during severe storms</th>
</tr>
</thead>
</table>

It is unclear if this strategy was completed. The Fire Department does operate a few sump pumps purchased equipment between 2010 and 2015. However, the committee felt as though the city should invest in upgrades.

There is also still a need for pumps at the Public Works Department and the Water Distribution Department.

<table>
<thead>
<tr>
<th>5</th>
<th>Server needed for City Hall</th>
</tr>
</thead>
</table>

Completed. Mainly driven by the need to update the city’s MS Server and Exchange OS, the city invested approximately $20,000, of which approximately $7,000 was hardware; the balance was for a Windows 2012 server license and Exchange 2013 user license.

<table>
<thead>
<tr>
<th>6</th>
<th>E911 Address Layer into GIS System</th>
</tr>
</thead>
</table>

Completed. The city partnered with UNH and utilized a software program that allows the city to easily update GIS layers with current assessing data that includes all address changes made by the E911 Committee. The E911 Committee was set up by the mayor and comprised of fire, police, EMS, post office, and a city councilor. The city now updates their GIS layers every few months so all addresses are up to date.

<table>
<thead>
<tr>
<th>7</th>
<th>Fluvial Erosion Hazard Mapping, Ordinance Development and Outreach</th>
</tr>
</thead>
</table>

Deleted. The NHGS did not survey or map any waterbodies within the city’s borders; therefore this is no data for the city to use. In the future, if there is a mapping study completed on the Salmon Falls River, the city may seek to develop a fluvial erosion hazard ordinance and subsequent outreach materials. Due to the unavailability of the data, this proposed action will be deleted from this plan update.
Chapter VIII: New Mitigation Strategies and STAPLEE

Feasibility and Prioritization

Table 8.1 reflects the newly identified potential multi-hazard mitigation strategies as well as the results of the STAPLEE Evaluation as explained below. It should also be noted that although some areas are identified as “Multi-Hazard”, many of these potential mitigation strategies overlap.

The goal of each proposed mitigation strategy is reduction or prevention of damage from a multi-hazard event. To determine their effectiveness in accomplishing this goal, a set of criteria was applied to each proposed strategy that was developed by the FEMA. The STAPLEE method analyzes the Social, Technical, Administrative, Political, Legal, Economic and Environmental aspects of a project and is commonly used by public administration officials and planners for making planning decisions. The following questions were asked about the proposed mitigation strategies discussed in Table 8.1.

Social: Is the proposed strategy socially acceptable to the community? Is there an equity issue involved that would result in one segment of the community being treated unfairly?

Technical: Will the proposed strategy work? Will it create more problems than it solves?

Administrative: Can the community implement the strategy? Is there someone to coordinate and lead the effort?

Political: Is the strategy politically acceptable? Is there public support both to implement and to maintain the project?

Legal: Is the community authorized to implement the proposed strategy? Is there a clear legal basis or precedent for this activity?

Economic: What are the costs and benefits of this strategy? Does the cost seem reasonable for the size of the problem and the likely benefits?

Environmental: How will the strategy impact the environment? Will it need environmental regulatory approvals?

Each proposed mitigation strategy was then evaluated and assigned a score based on the above criteria. Each of the STAPLEE categories were discussed and were awarded the following scores: Good = 3; Average = 2; Poor = 1. An evaluation chart with total scores for each new strategy is shown in Table 8.1.
The ranking of strategies with the scores displayed in the following pages was merely a guideline for further prioritizing. The team then prioritized the strategies and prepared the action plan using additional criteria:

- Does the action reduce damage?
- Does the action contribute to community objectives?
- Does the action meet existing regulations?
- Does the action protect historic structures?
- Can the action be implemented quickly?

The prioritization exercise helped the committee seriously evaluate the new hazard mitigation strategies that they had brainstormed throughout the multi-hazard mitigation planning process. While all actions would help improve the city's multi-hazard and responsiveness capability, funding availability will be a driving factor in determining what and when new mitigation strategies are implemented.

The Team’s Understanding of Multi-Hazard Mitigation Strategies

The Team determined that any strategy designed to reduce personal injury or damage to property that could be done prior to an actual disaster would be listed as a potential mitigation strategy. This decision was made even though not all projects listed in Tables 8.1 and 9.1 (Implementation Plan) are fundable under FEMA pre-mitigation guidelines. The Team determined that this Plan was in large part a management document designed to assist the City Council and other city officials in all aspects of managing and tracking potential emergency planning strategies. For instance, the team was aware that some of these strategies are more properly identified as readiness issues. The Team did not want to “lose” any of the ideas discussed during these planning sessions and thought this method was the best way to achieve that objective.

When brainstorming mitigation strategies for the City of Somersworth, the Hazard Planning Committee reviewed and considered all hazards identified in this Plan. Due to the infrequency and relative low risks of some of the hazards (lighting, radon, etc.) effecting Somersworth, the Planning Committee came up with a comprehensive list of strategies that would address the most relevant needs and vulnerabilities. While not every hazard has a mitigation strategy, they were all considered and play a vital role as an identified potential hazard for the future and should not be removed from the plan. But in order to remain efficient and mindful of local resources, the strategies and mitigation actions were designed to address the greatest weaknesses in Somersworth.
Table 8.1: Potential Mitigation Strategies & STAPLEE

<table>
<thead>
<tr>
<th>New Mitigation Project</th>
<th>Type of Hazard</th>
<th>Affected Location</th>
<th>Type of Activity</th>
<th>S</th>
<th>T</th>
<th>A</th>
<th>P</th>
<th>L</th>
<th>E</th>
<th>E</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purchase and install a generator at the City Hall to enhance communication and maintain essential infrastructure during emergency events.</td>
<td>Multi-Hazard</td>
<td>City-wide</td>
<td>Equipment Purchase</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Purchase and install a generator at the Public Works Department in order to sustain the continuity of operations within the city. Communication is important to allow crews to interface with police and fire departments during emergencies. Power is also needed to operate lights and doors to have access to equipment and materials during large events.</td>
<td>Multi-Hazard</td>
<td>Public Works/Highway Division</td>
<td>Equipment Purchase</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>19</td>
</tr>
<tr>
<td>Provide education and outreach on new delineated FEMA maps and information on NFIP options for residents.</td>
<td>Flooding</td>
<td>Residents in or in close proximity to the FEMA flood zones</td>
<td>Education & Outreach</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>21</td>
</tr>
</tbody>
</table>
Multi-Hazard Mitigation Plan Update 2016

City of Somersworth, New Hampshire

<table>
<thead>
<tr>
<th>Action</th>
<th>Hazard</th>
<th>Activity</th>
<th>Priority</th>
<th>Resource Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitigate flooding and evacuation issues by raising parts of Salmon Falls Road at the Rochester / Berwick (ME) border. Significant upgrades to existing culverts would also be necessary to handle increased precipitation during storm events.</td>
<td>Flooding</td>
<td>Salmon Falls Road Construction</td>
<td>3</td>
<td>There are questions as to the unintended consequences of raising the road.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>Will need the support of the City Council.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>Extremely high construction costs over a mile of roadway.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>May need environmental permits.</td>
</tr>
<tr>
<td>Conduct a flood mitigation study at both the wastewater treatment and water treatment facilities to evaluate flooding scenarios along the Salmon Falls River in that location.</td>
<td>Flooding</td>
<td>Wastewater and Water Treatment Facilities along Salmon Falls River Planning</td>
<td>3</td>
<td>Will need the support of the City Council.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>High cost to hire a consultant to conduct the study.</td>
</tr>
<tr>
<td>Review current groundwater protection ordinance to ensure best available performance standards and BMPS are being utilized. Revise protection areas to include newly sited wells (Dover).</td>
<td>Threats to Public Drinking Water Supplies</td>
<td>Groundwater protection district Planning</td>
<td>3</td>
<td>There may be push back with zoning changes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Replace current fire station (same location) as it does not meet current seismic codes.</td>
<td>Earthquake</td>
<td>Fire Station Construction</td>
<td>3</td>
<td>May be a challenge.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>Support of the City Council.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>Very high cost of construction.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
Multi-Hazard Mitigation Plan Update 2016
City of Somersworth, New Hampshire

<table>
<thead>
<tr>
<th>Action</th>
<th>Hazard</th>
<th>City-Wide</th>
<th>Equipment Purchase & Planning</th>
<th>Cost</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replace snow removal equipment and review maintenance schedules to limit post storm impacts, including: the availability of public access (roadways, sidewalks, etc.) and ensuring the continuity of operation of schools and local businesses.</td>
<td>Severe Winter Weather Events</td>
<td>City-wide</td>
<td></td>
<td>3</td>
<td>Moderate cost to replace equipment over time</td>
</tr>
<tr>
<td>Purchase a VAC-truck to assist in cleaning the city's catch basins and various stormwater infrastructures. The city will also develop a maintenance schedule to ensure a more efficient way of limiting flooding, stormwater runoff, and reducing sedimentation and degradation to water quality.</td>
<td>Multi-Hazard</td>
<td>City-wide</td>
<td></td>
<td>3</td>
<td>High cost of purchasing equipment</td>
</tr>
<tr>
<td>Adopt updated FEMA DFIRM maps once they become available (Risk mapping project).</td>
<td>Flooding</td>
<td>FEMA designated zones</td>
<td>Planning</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Develop and adopt new pavement management strategies.</td>
<td>Multi-Hazard</td>
<td>City-wide</td>
<td>Planning</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Chapter IX: Implementation Schedule for Prioritized Strategies

After reviewing the finalized STAPLEE numerical ratings, the Team prepared to develop the Implementation Plan (Table 9.1). To do this, team members created four categories into which they would place all the potential mitigation strategies.

- **Category 0** was to include those items, which were “continuous”, that is those that are being done and will continue to be done in the future.
- **Category 1** was to include those items under the direct control of city officials, within the financial capability of the city using only city funding, those already being done or planned, and those that could generally be completed within one year.
- **Category 2** was to include those items that the city did not have sole authority to act upon, those for which funding might be beyond the city’s capability, and those that would generally take between 13—24 months.
- **Category 3** was to include those items that would take a major funding effort, those that the city had little control over the final decision, and those that would take in excess of 24 months to complete.

Each potential mitigation strategy was placed in one of the three categories and then those strategies were prioritized within each category.

Once this was completed, the Team developed an implementation plan that outlined who is responsible for implementing each strategy, as well as when and how the actions will be implemented. The following questions were asked in order to develop an implementation schedule for the identified priority mitigation strategies.

WHO? Who will lead the implementation efforts? Who will put together funding requests and applications?

WHEN? When will these actions be implemented, and in what order?

HOW? How will the community fund these projects? How will the community implement these projects? What resources will be needed to implement these projects?

In addition to the prioritized mitigation projects, Table 9.1, Implementation Plan, includes the responsible party (WHO), how the project will be supported (HOW), and what the timeframe is for implementation of the project (WHEN).
Table 9.1: Implementation Plan

<table>
<thead>
<tr>
<th>Category</th>
<th>New Mitigation Project</th>
<th>Responsibility and/or Oversight</th>
<th>Funding and/or Support</th>
<th>Cost & Effectiveness</th>
<th>Timeframe</th>
<th>STAPLEEE Score (21 being the highest)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – 1</td>
<td>Purchase and install a generator at the City Hall to enhance communication and maintain essential infrastructure during emergency events.</td>
<td>Facility Director</td>
<td>City & Grant Funding</td>
<td>Purchasing this new equipment would have a high cost of $20,000.</td>
<td>6 months – 1 year</td>
<td>19</td>
</tr>
<tr>
<td>1 – 2</td>
<td>Develop and adopt new pavement management strategies.</td>
<td>Public Works Director</td>
<td>City Funding</td>
<td>Developing new pavement management strategies will be a moderate cost of $1,000 - $5,000 of staff time.</td>
<td>6 months – 1 year</td>
<td>21</td>
</tr>
<tr>
<td>2 – 1</td>
<td>Review current groundwater protection ordinance to ensure best available performance standards and BMPS are being utilized. Revise protection areas to include newly sited wells (Dover).</td>
<td>Director of Planning & Community Development</td>
<td>City Funding & Technical Assistance from SRPC and NHDES</td>
<td>The city has recognized the importance of protecting existing and future drinking water supplies to limit public health risks. This review would be have a relative low cost of <$1,000.</td>
<td>1 – 2 years</td>
<td>20</td>
</tr>
<tr>
<td>2 – 2</td>
<td>Provide education and outreach on new delineated FEMA maps and information on NFIP options for residents.</td>
<td>Director of Planning & Community Development</td>
<td>City Funding & Technical Assistance from SRPC</td>
<td>There are existing outreach materials that could be tailored for the city's residents. This strategy would have a low cost of <$1,000.</td>
<td>2 – 3 years</td>
<td>21</td>
</tr>
<tr>
<td>3 – 1</td>
<td>Adopt updated FEMA DFIRM maps once they become available (Risk mapping project).</td>
<td>Director of Planning & Community Development & City Council</td>
<td>City Funding</td>
<td>The mapping effort will be completed by FEMA's Discovery Risk Mapping project. Somersworth will only need to adopt the maps and conduct outreach at a relatively low cost of >$1,000.</td>
<td>3 – 5 years</td>
<td>21</td>
</tr>
</tbody>
</table>
Multi-Hazard Mitigation Plan Update 2016
City of Somersworth, New Hampshire

<table>
<thead>
<tr>
<th>Proposal</th>
<th>Responsible Parties</th>
<th>Funding</th>
<th>Duration</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 – 2 Purchase and install a generator at the Public Works Department in order to sustain the continuity of operations within the city. Communication is important to allow crews to interface with police and fire departments during emergencies. Power is also needed to operate lights and doors to have access to equipment and materials during large events.</td>
<td>Facility Director & Public Works Director</td>
<td>City & Grant Funding</td>
<td>Purchasing this new equipment would have a high cost between $50,000 - $75,000</td>
<td>3 – 5 years</td>
</tr>
<tr>
<td>3 – 3 Mitigate flooding and evacuation issues by raising parts of Salmon Falls Road at the Rochester / Berwick (ME) border. Significant upgrades to existing culverts would also be necessary to handle increased precipitation during storm events.</td>
<td>Public Works Director & Contracted Engineering Firm</td>
<td>City & Grant Funding</td>
<td>This stretch of roadway is over a mile long and would have significant capital costs. The estimated cost for completion would be >$1,000,000, which is a very high cost.</td>
<td>4 – 5 years</td>
</tr>
<tr>
<td>3 – 4 Conduct a flood mitigation study at both the wastewater treatment and water treatment facilities to evaluate flooding scenarios along the Salmon Falls River in that location.</td>
<td>Public Works Director & Contracted Consulting Firm</td>
<td>City & Grant Funding</td>
<td>In order to complete this strategy, the city would need to hire an environmental consulting firm at a high cost of approximately $25,000 – $50,000.</td>
<td>4 – 5 years</td>
</tr>
<tr>
<td>3 – 5 Replace current fire station (same location) as it does not meet current seismic codes.</td>
<td>Fire Chief & Facility Manager</td>
<td>City Funding</td>
<td>The construction of a new fire station would have a very high cost of approximately $4,000,000.</td>
<td>4 – 5 years</td>
</tr>
<tr>
<td>Task Description</td>
<td>Responsible Official</td>
<td>Funding</td>
<td>Cost Range</td>
<td>Timeframe</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------</td>
<td>---------</td>
<td>------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Replace snow removal equipment and review maintenance schedules to limit post storm impacts, including: the availability of public access (roadways, sidewalks, etc.) and ensuring the continuity of operation of schools and local businesses.</td>
<td>Public Works Director</td>
<td>City & Grant Funding</td>
<td>A 6-wheel plow truck equipped with a dump body and sander would have a high cost between $160,000 and $180,000. The snow blower for downtown would have a high cost of $75,000.</td>
<td>4 – 5 years</td>
</tr>
<tr>
<td>Purchase a VAC-truck to assist in cleaning the city’s catch basins and various stormwater infrastructures. The city will also develop a maintenance schedule to ensure a more efficient way of limiting flooding, stormwater runoff, and reducing sedimentation and degradation to water quality.</td>
<td>Public Works Director</td>
<td>City & Grant Funding</td>
<td>The VAC-truck would have a high cost between $250,000 and $275,000. However, developing a maintenance schedule would have a relative low cost of <$1,000.</td>
<td>4 – 5 years</td>
</tr>
</tbody>
</table>
Chapter X: Monitoring, Evaluation, and Updating the Plan

Introduction

A good mitigation plan must allow for updates where and when necessary, particularly since communities may suffer budget cuts or experience personnel turnover during both the planning and implementation states. A good plan will incorporate periodic monitoring and evaluation mechanisms to allow for review of successes and failures or even just simple updates.

Multi-Hazard Plan Monitoring, Evaluation, and Updates

To track programs and update the mitigation strategies identified through this process, the city will review the multi-hazard mitigation plan annually or after a hazard event. Additionally, the Plan will undergo a formal review and update at least every five years and obtain FEMA approval for this update or any other major changes done in the Plan at any time. The Emergency Management Director is responsible for initiating the review and will consult with members of the multi-hazard mitigation planning team identified in this plan. The public will be encouraged to participate in any updates and will be given the opportunity to be engaged and provide feedback through such means as periodic presentations on the plan at city functions, annual questionnaires or surveys, and posting on social media/interactive websites. Public announcements will be made through advertisements in local papers, postings on the city website, and posters disseminated throughout the city. A formal public meeting will be held before reviews and updates are official.

Changes will be made to the Plan to accommodate projects that have failed or are not considered feasible after a review for their consistency with STAPLEE, the timeframe, the community's priorities or funding resources. Priorities that were not ranked high, but identified as potential mitigation strategies, will be reviewed as well during the monitoring and update of the plan to determine feasibility of future implementation. In keeping with the process of adopting this multi-hazard mitigation plan, a public meeting to receive public comment on plan maintenance and updating will be held during the annual review period and before the final product is adopted by the City Council. Chapter XI contains a representation of a draft resolution for Somersworth to use once a conditional approval is received from FEMA.

Integration with Other Plans

Both the 2004 and 2011 plans were used during periodic updates to the Somersworth Master Plan. Input on impacts to roads and other critical infrastructure from hazards was included in relevant
master plan sections. Both plans were also used during capital improvements planning updates and prioritization of municipal culverts and stream crossings for repair and replacement schedules.

This multi-hazard plan will only enhance mitigation if balanced with all other city plans. Somersworth will take the necessary steps to incorporate the mitigation strategies and other information contained in this plan with other city activities, plans and mechanisms, such as comprehensive land use planning, capital improvements planning, site plan regulations, and building codes to guide and control development in the City of Somersworth, when appropriate. The local government will refer to this Plan and the strategies identified when updating the City’s Master Plan, Capital Improvements Program, Zoning Ordinances and Regulations, and Emergency Action Plan. The City Council and the Hazard Mitigation Committee will work with city officials to incorporate elements of this Plan into other planning mechanisms, when appropriate. The Emergency Management Director along with other members of the Hazard Mitigation Committee will work with the Planning Board to suggest including the updated Hazard Mitigation Plan as a chapter in the City’s Master Plan. In addition, the City will review and make note of instances when this has been done and include it as part of their annual review of the Plan.
Chapter XI: Signed Community Documents and Approval Letters

Conditional Approval Letter from FEMA

Congratulations!

FEMA Region I has completed its review of the Somersworth, NH Hazard Mitigation Plan and found it approvable pending adoption. With this approval, the jurisdiction meets the local mitigation planning requirements under 44 CFR 201 pending FEMA’s receipt of electronic copies of the adoption documentation and the final plan.

These items should be provided to your State’s mitigation planning point of contact who will ensure they are forwarded to FEMA. Acceptable electronic formats include Word or PDF files and must be submitted to us via email at fema-r1-mitigationplans@fema.dhs.gov. Upon FEMA’s receipt of these documents, a formal letter of approval will be issued, along with the final FEMA Checklist and Assessment.

The FEMA letter of formal approval will confirm the jurisdiction’s eligibility to apply for Mitigation grants administered by FEMA and identify related issues affecting eligibility, if any. If the plan is not adopted within one calendar year of FEMA’s Approval Pending Adoption, the jurisdiction must update the entire plan and resubmit it for FEMA review. If you have questions or wish to discuss this determination further, please contact me at Melissa.Surette@fema.dhs.gov or 617-956-7559.

Thank you for submitting the Somersworth, NH Hazard Mitigation Plan and congratulations again on your successful community planning efforts.

Sincerely,

Melissa A. Surette
Senior Planner, Risk Analysis Branch

FEMA Region I
99 High Street
Boston, MA 02110

Email: Melissa.Surette@fema.dhs.gov
Office: 617.956.7559
Cellular: 617.794.0292
Multi-Hazard Mitigation Plan Update 2016
City of Somersworth, New Hampshire

Signed Certificate of Adoption

SOMERSWORTH, NEW HAMPSHIRE

City of Somersworth
One Government Way
Somersworth, NH 03876

CERTIFICATE OF ADOPTION

PLAN SUBMITTED TO FEMA: 3/8/2016
CONDITIONALLY APPROVED: 5/13/2016

A DUTY-NOTICED PUBLIC MEETING WAS HELD BY THE SOMERSWORTH CITY COUNCIL ON
JUNE 6, 2016 TO FORMALLY APPROVE AND ADOPT THE SOMERSWORTH, NH MULTI-
Hazard Mitigation Plan Update 2016.

THE SOMERSWORTH CITY COUNCIL VOTED 7-0 TO ADOPT THE SOMERSWORTH, NH
Multi-Hazard Mitigation Plan Update 2016 AS AN OFFICIAL PLAN OF THE CITY OF
SOMERSWORTH.

[Signature]
ROBERT M. BELMORE
CITY MANAGER

DATE 06-07-16

Proud past, bright future
Final Approval Letter from FEMA

JUN 28 2016

Honorable Dana S. Hilliard, Mayor
City of Somersworth
One Government Way
Somersworth, NH 03878

Dear Mayor Hilliard:

Thank you for the opportunity to review the Multi-Hazard Mitigation Plan Update 2016 City of Somersworth, NH. The Department of Homeland Security (DHS), Federal Emergency Management Agency (FEMA) Region I has evaluated the plan for compliance with 44 C.F.R. Pt. 201. The plan satisfactorily meets all of the mandatory requirements set forth by the regulations.

With this plan approval, the City of Somersworth is eligible to apply to New Hampshire Homeland Security and Emergency Management for mitigation grants administered by FEMA. Requests for mitigation funding will be evaluated individually according to the specific eligibility requirements identified for each of these programs. A specific mitigation activity or project identified in your community’s plan may not meet the eligibility requirements for FEMA funding; even eligible mitigation activities or projects are not automatically approved.

Approved mitigation plans are eligible for points under the National Flood Insurance Program’s Community Rating System (CRS). Complete information regarding the CRS can be found at http://www.fema.gov/national-flood-insurance-program-community-rating-system, or through your local floodplain administrator.

The Multi-Hazard Mitigation Plan Update 2016 City of Somersworth, NH must be reviewed, revised as appropriate, and resubmitted to FEMA for approval within five years of the plan approval date of June 17, 2016 in order to maintain eligibility for mitigation grant funding. We encourage the City to continually update the plan’s assessment of vulnerability, adhere to its maintenance schedule, and implement, when possible, the mitigation actions proposed in the plan.

Once again, thank you for your continued dedication to public service demonstrated by preparing and adopting a strategy for reducing future disaster losses. Should you have any questions, please do not hesitate to contact Melissa Surette at (617) 956-7559.

Sincerely,

Paul F. Ford
Regional Administrator

PFF: ms

cc: Leigh Cheney, Acting New Hampshire State Hazard Mitigation Officer
Jennifer Gilbert, Asst. New Hampshire State NFIP Coordinator
Parker Moore, Emergency Management Planning Specialist, New Hampshire
Keith Hoyle, EMD, Somersworth
Kyle Pimental, Principal Regional Planner, SRPC

Enclosure
Appendices

Appendix A: Bibliography

Appendix B: Planning Process Documentation

Appendix C: Summary of Possible Multi-Hazard Mitigation Strategies

Appendix D: List of Contacts

Appendix E: Technical and Financial Assistance for Multi-Hazard Mitigation

 Hazard Mitigation Grant Program (HMGP)
 Pre-Disaster Mitigation (PDM)
 Flood Mitigation Assistance (FMA)

Appendix F: Maps

 Emergency Response Facilities
 Non-Emergency Response Facilities
 Facilities and Populations to Protect
 Potential Resources
 Water Resources
Appendix A: Bibliography

Documents

- Local Mitigation Plan Review Guide, FEMA, October 1, 2011
- Multi-Hazard Mitigation Plans
 - Town of Albany, 2010
 - Town of Lee, 2013
 - Town of Madbury, 2014
 - Town of Rollinsford, 2016
- State of New Hampshire Multi-Hazard Mitigation Plan (2013) - State Hazard Mitigation Goals
- Disaster Mitigation Act (DMA) of 2000, Section 101, b1 & b2 and Section 322a
 http://www.fema.gov/library/viewRecord.do?id=1935
- Economic & Labor Market Information Bureau, NH Employment Security, 2014; Census 2000 and Revenue Information
- NCDC [National Climatic Data Center, National Oceanic and Atmospheric Administration]. 2015. Storm Events

Photos

- Bob Belmore, City Manager, City of Somersworth
Appendix B: Planning Process Documentation

Agendas

City of Somersworth, New Hampshire

Hazard Mitigation Committee Meeting #1

October 28, 2015
10:30AM

City of Somersworth
One Government Way
Somersworth, NH 03878

MEETING AGENDA

1. Call to order and introductions

2. Brief review on update process: timeframe, committee responsibilities, and in-kind match

 a. Tropical Storm Irene (2011)
 b. Halloween Snowstorm (2011)
 c. Hurricane Sandy (2012)
 d. Blizzard Nemo (2013)
 e. Blizzard Juno (2015)

4. Review rating probability, severity, and overall risk ratings

5. Fill out Table 2.3: Hazard Vulnerability Assessment Tool
 a. Use tool from State’s Hazard Mitigation Plan (2013) as a guide

6. Review descriptions and solicit input on all hazards
 a. Flooding
 b. Dam Failure
 c. Severe Thunderstorms
 d. Wildfire
 e. Severe Winter Weather
 f. Earthquake
 g. Landslide
 h. Drought
 i. Hurricane & Tropical Storms
 j. Hazardous Material
 k. Tornado & Downburst
 l. Extreme Temperatures
 m. Public Health Threats

7. Review flood insurance program status

8. Review demographics section

9. Next meeting date

10. Adjournment
City of Somersworth, New Hampshire

Hazard Mitigation Committee Meeting #2

December 9th, 2015
11:00AM

City of Somersworth
One Government Way
Somersworth, NH 03878

MEETING AGENDA

1. Call to order and introductions

2. Review minutes from the October 28th meeting – see attachment MeetingMinutes_102815.docx

3. Review Table 2.3: Hazard Vulnerability Assessment Tool for any final edits – see attachment HazardVulnerability_Tool.pdf

 a. Identify gaps on the maps (locations, names, etc.)
 i. Copies of maps will be provided at the meeting
 b. Identify which structures are vulnerable to specific hazards

5. Calculate potential loss estimates for all structures in Somersworth for each hazard – see attachment Review MeetingMaterials.pdf (pages 51-52)

 a. Review and update Table 6.1 if existing strategies and proposed improvements
 i. Input needed on effectiveness, changes in priority, and general updates
 b. Determine gaps in existing strategies
 c. Make recommendations for improvement

7. Review and update Table 7.1 of accomplishments since prior plan(s) adoption – see attachment Review MeetingMaterials.pdf (pages 60)

8. Next meeting date

9. Adjournment
City of Somersworth, New Hampshire

Hazard Mitigation Committee Meeting #3

January 13th, 2016
10:00AM

City of Somersworth
One Government Way
Somersworth, NH 03878

MEETING AGENDA

1. Call to order and introductions

2. Review minutes from the December 9th meeting – see attachment MeetingMinutes_120915.docx

 a. Identify gaps on the maps (locations, names, etc.)
 b. Copies of maps will be provided at the meeting

4. Review Multi-Hazard Goals and Existing Strategies – see attachment Existing_Strategies.pdf (pages 58 – 64)
 a. Review gaps in existing measures (page 59)
 b. Review summary of recommended improvements (page 59)
 c. Review Table 6.1 (pages 60 – 63)

5. Review Table 7.1 of accomplishments since prior plan(s) adoption – see attachment Accompishments.pdf (pages 65-66)

6. **Develop new mitigation strategies (Most important part of plan – please come prepared with ideas) – see attachment New_Strategies.pdf (pages 67-74)
 a. Review STAPLEE evaluation method (pages 67-68)
 b. Develop 7-10 new potential mitigation strategies – Table 8.1 (pages 69-72)
 c. Complete implementation plan – Table 9.1 (page 74)

7. Final meeting date

8. Adjournment
City of Somersworth, New Hampshire

Hazard Mitigation Committee Meeting #4

February 10th, 2016
10:30AM

City of Somersworth
One Government Way
Somersworth, NH 03878

MEETING AGENDA

1. Call to order and introductions

2. Review minutes from the January 13th meeting – see attachment MeetingMinutes_011316.docx

3. Review Table 5.1 that identifies vulnerable structures that are within or are in close proximity to potential and past flooding areas – see attachment VulnerableStructures.docx

4. Review Table 8.1 – Potential Mitigation Strategies & STAPLEE and 9.1 – Implementation Plan – see attachment Strategies_Implementation.pdf

5. Review final maps with identified past and potential flooding areas, as well as critical and key resources
 a. Large copy prints will be available to review at the meeting

6. Final comments questions or concerns on plan

7. Adjournment
City of Somersworth, New Hampshire

Hazard Mitigation Committee Meeting #1

October 28, 2015

10:30AM – 12:30PM

City of Somersworth
One Government Way
Somersworth, NH 03878

ATTENDANCE SHEET

<table>
<thead>
<tr>
<th>Name</th>
<th>Position Title/Department Affiliation</th>
<th>E-mail</th>
<th>Time spent reviewing materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>John (Andy) Lucier</td>
<td>Facilities Director</td>
<td>lucier@csau56.org</td>
<td>1.5 hr.</td>
</tr>
<tr>
<td>Keith Hayle</td>
<td>Fire Chief</td>
<td>khayle@somersworth.com</td>
<td>2.0 hr.</td>
</tr>
<tr>
<td>Paul Rebik</td>
<td>American Atlantic</td>
<td>pru@americanatlantic.com</td>
<td>2.0 hr.</td>
</tr>
<tr>
<td>Scott Smith</td>
<td>City</td>
<td>smith@somersworth.com</td>
<td>1.5 hr.</td>
</tr>
<tr>
<td>Jeni Mosca</td>
<td>Supt. of Schools</td>
<td>mosca@csau56.org</td>
<td>1 hr.</td>
</tr>
<tr>
<td>Tim McClain</td>
<td>Police Dept. - Lt.</td>
<td>mcclain@somersworth.com</td>
<td>1 hr.</td>
</tr>
<tr>
<td>Dave Sharple</td>
<td>Office of Planning, Comm. Dev.</td>
<td>sharple@somersworth.com</td>
<td>1.5 hr.</td>
</tr>
<tr>
<td>Gene Ciampi</td>
<td>Police Chief</td>
<td>ciampi@somersworth.com</td>
<td>1 hr.</td>
</tr>
<tr>
<td>Ross Timmons</td>
<td>Captain Police</td>
<td>timmons@somersworth.com</td>
<td>1 hr.</td>
</tr>
<tr>
<td>Deborah Evans</td>
<td>Executive Director</td>
<td>davies@somersworth.org</td>
<td>1 hr.</td>
</tr>
<tr>
<td>Robert M. Belmore</td>
<td>City Manager</td>
<td>belmore@somersworth.com</td>
<td>1 hr.</td>
</tr>
</tbody>
</table>
City of Somersworth, New Hampshire

Hazard Mitigation Committee Meeting #1

December 9, 2015
11:00AM

City of Somersworth
One Government Way
Somersworth, NH 03878

ATTENDANCE SHEET

<table>
<thead>
<tr>
<th>Name</th>
<th>Position Title/ Department Affiliation</th>
<th>E-mail (if not included in previous mtg)</th>
<th>Time spent reviewing materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deborah Evans</td>
<td>E.O., STHA</td>
<td>djevers@somersworth.leving.org</td>
<td>1 HR</td>
</tr>
<tr>
<td>Andy Maciel</td>
<td>Facilitating Director</td>
<td>aumaciel@somersworth.org</td>
<td></td>
</tr>
<tr>
<td>Jeni Mosca</td>
<td>Sup't of Schools</td>
<td>jmosca@somersn.org</td>
<td>1 HR</td>
</tr>
<tr>
<td>Dave Shafer</td>
<td>Dir. Plan & Dev.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tim McEwan</td>
<td>Somersworth AD</td>
<td>timclia@somersworth.com</td>
<td>1 hr</td>
</tr>
<tr>
<td>Paul Robidas</td>
<td>Chief, American Ambulance</td>
<td>robidas@americanambulance.com</td>
<td>1 hr</td>
</tr>
<tr>
<td>Kevin Hughe</td>
<td>Chief - Fire</td>
<td>khughe@somersworth.com</td>
<td>1 HR</td>
</tr>
<tr>
<td>Russ Timmors</td>
<td>Police</td>
<td>rtimmors@somersworth.com</td>
<td>1 HR</td>
</tr>
<tr>
<td>Mike Robinsky</td>
<td>Dirn. of Public Works & Utilities</td>
<td>mrobinsky@somersworth.nh.gov</td>
<td></td>
</tr>
<tr>
<td>Bob Belmore</td>
<td></td>
<td>cm</td>
<td></td>
</tr>
</tbody>
</table>
City of Somersworth, New Hampshire

Hazard Mitigation Committee Meeting #3

January 13th, 2016
10:00AM

City of Somersworth
One Government Way
Somersworth, NH 03878

ATTENDANCE SHEET

<table>
<thead>
<tr>
<th>Name</th>
<th>Position Title/ Department Affiliation</th>
<th>E-mail (if not included in previous mtg.)</th>
<th>Time spent reviewing materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paul Robidas</td>
<td>American Red Cross</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Scott Smith</td>
<td>COS</td>
<td>jenamosa@gmail.com</td>
<td>1</td>
</tr>
<tr>
<td>Tim McLain</td>
<td>Police Lt.</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Deborah Evans</td>
<td>ED/ Som, Housing</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Jeni Mosca</td>
<td>Sup, of Schools</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Russ Timmons</td>
<td>Police Capt</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Dave Sharples</td>
<td>Dir. Plant Comm.</td>
<td></td>
<td>1/2 hr.</td>
</tr>
<tr>
<td>Klein Hale</td>
<td>Fire Department - Chief</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Bob Belmore</td>
<td>C.L - COS</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Mike Sabinsky</td>
<td>Dir. of Public Works/Utilities</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

...
City of Somersworth, New Hampshire

Hazard Mitigation Committee Meeting #4

February 10, 2015
10:30AM

City of Somersworth
One Government Way
Somersworth, NH 03878

ATTENDANCE SHEET

<table>
<thead>
<tr>
<th>Name</th>
<th>Position Title/ Department Affiliation</th>
<th>E-mail (if not included in previous mtg.)</th>
<th>Time spent reviewing materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keith Hayne</td>
<td>Fire Chief</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>John Moscati</td>
<td>Sup. of Schools</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Andy Lucien</td>
<td>Facilities Dir.</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Bob Belmore</td>
<td>City Manager</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Paul Robidou</td>
<td>Assistant Auditor</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Cassandra Evens</td>
<td>Somersworth Hg. Dist</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Russ Timmons</td>
<td>Police</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Mike Robinsky</td>
<td>Dir. of Pw.-Util.</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Appendix C: Summary of Possible Multi-Hazard Mitigation Strategies

I. RIVERINE MITIGATION

A. Prevention
Prevention measures are intended to keep the problem from occurring in the first place, and/or keep it from getting worse. Future development should not increase flood damage. Building, zoning, planning, and/or code enforcement personnel usually administer preventative measures.

1. Planning and Zoning - Land use plans are put in place to guide future development, recommending where - and where not - development should occur and where it should not. Sensitive and vulnerable lands can be designated for uses that would not be incompatible with occasional flood events - such as parks or wildlife refugees. A Capital Improvements Program (CIP) can recommend the setting aside of funds for public acquisition of these designated lands. The zoning ordinance can regulate development in these sensitive areas by limiting or preventing some or all development - for example, by designating floodplain overlay, conservation, or agricultural districts.

2. Open Space Preservation - Preserving open space is the best way to prevent flooding and flood damage. Open space preservation should not, however, be limited to the floodplain, since other areas within the watershed may contribute to controlling the runoff that exacerbates flooding. Land Use and Capital Improvement Plans should identify areas to be preserved by acquisition and other means, such as purchasing easements. Aside from outright purchase, open space can also be protected through maintenance agreements with the landowners, or by requiring developers to dedicate land for flood flow, drainage and storage.

3. Floodplain Development Regulations - Floodplain development regulations typically do not prohibit development in the special flood hazard area, but they do impose construction standards on what is built there. The intent is to protect roads and structures from flood damage and to prevent the development from aggravating the flood potential. Floodplain development regulations are generally incorporated into subdivision regulations, building codes, and floodplain ordinances.

 a. Subdivision Regulations: These regulations govern how land will be divided into separate lots or sites. They should require that any flood hazard areas be shown on the plat, and that every lot has a buildable area that is above the base flood elevation.

 b. Building Codes: Standards can be incorporated into building codes that address flood proofing for all new and improved or repaired buildings.

 c. Floodplain Ordinances: Communities that participate in the National Flood Insurance Program are required to adopt the minimum floodplain management regulations, as developed by FEMA. The regulations set minimum standards for subdivision regulations and building codes. Communities may adopt more stringent standards than those set forth by FEMA.

27 All zoning should be carefully reviewed on a consistent basis by municipal officials to make sure guidelines are up-to-date and towns are acting in accordance with best management practices.
4. **Stormwater Management** - Development outside of a floodplain can contribute significantly to flooding by covering impervious surfaces, which increases storm water runoff. Storm water management is usually addressed in subdivision regulations. Developers are typically required to build retention or detention basins to minimize any increase in runoff caused by new or expanded impervious surfaces, or new drainage systems. Generally, there is a prohibition against storm water leaving the site at a rate higher than it did before the development. One technique is to use wet basins as part of the landscaping plan of a development. It might even be possible to site these basins based on a watershed analysis. Since detention only controls the runoff rates and not volumes, other measures must be employed for storm water infiltration - for example, swales, infiltration trenches, vegetative filter strips, and permeable paving blocks.

5. **Drainage System Maintenance** - Ongoing maintenance of channel and detention basins is necessary if these facilities are to function effectively and efficiently over time. A maintenance program should include regulations that prevent dumping in or altering water courses or storage basins; regrading and filling should also be regulated. Any maintenance program should include a public education component, so that the public becomes aware of the reasons for the regulations. Many people do not realize the consequences of filling in a ditch or wetland, or regrading.

B. Property Protection

Property protection measures are used to modify buildings subject to flood damage, rather than to keep floodwaters away. These may be less expensive to implement, as they are often carried out on a cost-sharing basis. In addition, many of these measures do not affect a building's appearance or use, which makes them particularly suitable for historical sites and landmarks.

1. **Relocation** - Moving structures out of the floodplain is the surest and safest way to protect against damage. Relocation is expensive, however, so this approach will probably not be used except in extreme circumstances. Communities that have areas subject to severe storm surges, ice jams, etc. might want to consider establishing a relocation program, incorporating available assistance.

2. **Acquisition** - Acquisition by a governmental entity of land in a floodplain serves two main purposes: 1) it ensures that the problem of structures in the floodplain will be addressed; and 2) it has the potential to convert problem areas into community assets, with accompanying environmental benefits. Acquisition is more cost effective than relocation in those areas that are subject to storm surges, ice jams, or flash flooding. Acquisition, followed by demolition, is the most appropriate strategy for those buildings that are simply too expensive to move, as well as for dilapidated structures that are not worth saving or protecting. Acquisition and subsequent relocation can be expensive, however, there are government grants and loans that can be applied toward such efforts.

3. **Building Elevation** - Elevating a building above the base flood elevation is the best on-site protection strategy. The building could be raised to allow water to run underneath it, or fill could be brought in to elevate the site on which the building sits. This approach is cheaper than relocation, and tends to be less disruptive to a neighborhood. Elevation is required by law for new and substantially improved residences in a floodplain, and is commonly practiced in flood hazard areas nationwide.
4. **Floodproofing** - If a building cannot be relocated or elevated, it may be floodproofed. This approach works well in areas of low flood threat. Floodproofing can be accomplished through barriers to flooding, or by treatment to the structure itself.

 a. **Barriers:** Levees, floodwalls and berms can keep floodwaters from reaching a building. These are useful, however, only in areas subject to shallow flooding.

 b. **Dry Floodproofing:** This method seals a building against the water by coating the walls with waterproofing compounds or plastic sheeting. Openings, such as doors, windows, etc. are closed either permanently with removable shields or with sandbags.

 c. **Wet Floodproofing:** This technique is usually considered a last resort measure, since water is intentionally allowed into the building in order to minimize pressure on the structure. Approaches range from moving valuable items to higher floors to rebuilding the floodable area. An advantage over other approaches is that simply by moving household goods out of the range of floodwaters, thousands of dollars can be saved in damages.

5. **Sewer Backup Protection** - Storm water overloads can cause backup into basements through sanitary sewer lines. Houses that have any kind of connection to a sanitary sewer system - whether it is downspouts, footing drain tile, and/or sump pumps, can be flooded during a heavy rain event. To prevent this, there should be no such connections to the system, and all rain and ground water should be directed onto the ground, away from the building. Other protections include:

 a. Floor drain plugs and floor drain standpipe, which keep water from flowing out of the lowest opening in the house.

 b. Overhead sewer - keeps water in the sewer line during a backup.

 c. Backup valve - allows sewage to flow out while preventing backups from flowing into the house.

6. **Insurance** - Above and beyond standard homeowner insurance, there is other coverage a homeowner can purchase to protect against flood hazard. Two of the most common are National Flood Insurance and basement backup insurance.

 a. **National Flood Insurance:** When a community participates in the National Flood Insurance Program, any local insurance agent is able to sell separate flood insurance policies under rules and rates set by FEMA. Rates do not change after claims are paid because they are set on a national basis.

 b. **Basement Backup Insurance:** National Flood Insurance offers an additional deductible for seepage and sewer backup, provided there is a general condition of flooding in the area that was the proximate cause of the basement getting wet. Most exclude damage from surface flooding that would be covered by the NFIP.
C. Natural Resource Protection
Preserving or restoring natural areas or the natural functions of floodplain and watershed areas provide the benefits of eliminating or minimizing losses from floods, as well as improving water quality and wildlife habitats. Parks, recreation, or conservation agencies usually implement such activities. Protection can also be provided through various zoning measures that are specifically designed to protect natural resources.

1. **Wetlands Protection** - Wetlands are capable of storing large amounts of floodwaters, slowing and reducing downstream flows, and filtering the water. Any development that is proposed in a wetland is regulated by either federal and/or state agencies. Depending on the location, the project might fall under the jurisdiction of the U.S. Army Corps of Engineers, which in turn, calls upon several other agencies to review the proposal. In New Hampshire, the N.H. Wetlands Board must approve any project that impacts a wetland. Many communities in New Hampshire also have local wetland ordinances.

Generally, the goal is to protect wetlands by preventing development that would adversely affect them. Mitigation techniques are often employed, which might consist of creating a wetland on another site to replace what would be lost through the development. This is not an ideal practice since it takes many years for a new wetland to achieve the same level of quality as an existing one, if it can at all.

2. **Erosion and Sedimentation Control** - Controlling erosion and sediment runoff during construction and on farmland is important, since eroding soil will typically end up in downstream waterways. Because sediment tends to settle where the water flow is slower, it will gradually fill in channels and lakes, reducing their ability to carry or store floodwaters.

3. **Best Management Practices** - Best Management Practices (BMPs) are measures that reduce non-point source pollutants that enter waterways. Non-point source pollutants are carried by storm water to waterways, and include such things as lawn fertilizers, pesticides, farm chemicals, and oils from street surfaces and industrial sites. BMPs can be incorporated into many aspects of new developments and ongoing land use practices. In New Hampshire, the Department of Environmental Services has developed Best Management Practices for a range of activities, from farming to earth excavations.

D. Emergency Services
Emergency services protect people during and after a flood. Many communities in New Hampshire have emergency management programs in place, administered by an emergency management director (very often the local police or fire chief).

1. **Flood Warning** - On large rivers, the National Weather Service handles early recognition. Communities on smaller rivers must develop their own warning systems. Warnings may be disseminated in a variety of ways, such as sirens, radio, television, mobile public address systems, or door-to-door contact. It seems that multiple or redundant systems are the most effective, giving people more than one opportunity to be warned.

2. **Flood Response** - Flood response refers to actions that are designed to prevent or reduce damage or injury, once a flood threat is recognized. Such actions and the appropriate parties include:
a. Activating the emergency operations center (emergency director)
b. Sandbagging designated areas (Highway Department)
c. Closing streets and bridges (police department)
d. Shutting off power to threatened areas (public service)
e. Releasing children from school (school district)
f. Ordering an evacuation (municipal government/emergency director)
g. Opening evacuation shelters (churches, schools, Red Cross, municipal facilities)

These actions should be part of a flood response plan, which should be developed in coordination with the persons and agencies that share the responsibilities. Drills and exercises should be conducted so that the key participants know what they are supposed to do.

3. **Critical Facilities Protection** - Protecting critical facilities is vital, since expending efforts on these facilities can draw workers and resources away from protecting other parts of the city. Critical facilities fall into two categories:

 a. **Buildings or locations vital to the flood response effort:**
 i. Emergency operations centers
 ii. Police and fire stations
 iii. Highway garages
 iv. Selected roads and bridges
 v. Evacuation routes

 b. **Buildings or locations that, if flooded, would create disasters:**
 i. Hazardous materials facilities
 ii. Schools

 All such facilities should have their own flood response plan that is coordinated with the community’s plan. Schools will typically be required by the state to have emergency response plans in place.

4. **Health and Safety Maintenance** - The flood response plan should identify appropriate measures to prevent danger to health and safety. Such measures include:

 a. Patrolling evacuated areas to prevent looting
 b. Vaccinating residents for tetanus
 c. Clearing streets
 d. Cleaning up debris

 The Plan should also identify which agencies will be responsible for carrying out the identified measures. A public information program can be helpful to educate residents on the benefits of taking health and safety precautions.

E. **Structural Projects**

Structural projects are used to prevent floodwaters from reaching properties. These are all man-made structures, and can be grouped into the six types discussed below. The shortcomings of structural approaches are:

- Can be very expensive
- Disturb the land, disrupt natural water flows, & destroy natural habitats.
• Are built to an anticipated flood event, and may be exceeded by a greater-than-expected flood
• Can create a false sense of security.

1. **Diversions** - A diversion is simply a new channel that sends floodwater to a different location, thereby reducing flooding along an existing watercourse. Diversions can be surface channels, overflow weirs, or tunnels. During normal flows, the water stays in the old channel. During flood flows, the stream spills over the diversion channel or tunnel, which carries the excess water to the receiving lake or river. Diversions are limited by topography; they won’t work everywhere. Unless the receiving water body is relatively close to the flood prone stream and the land in between is low and vacant, the cost of creating a diversion can be prohibitive. Where topography and land use are not favorable, a more expensive tunnel is needed. In either case, care must be taken to ensure that the diversion does not create a flooding problem somewhere else.

2. **Levees/Floodwalls** - Probably the best known structural flood control measure is either a levee (a barrier of earth) or a floodwall made of steel or concrete erected between the watercourse and the land. If space is a consideration, floodwalls are typically used, since levees need more space. Levees and floodwalls should be set back out of the floodway, so that they will not divert floodwater onto other properties.

3. **Reservoirs** - Reservoirs control flooding by holding water behind dams or in storage basins. After a flood peaks, water is released or pumped out slowly at a rate the river downstream can handle. Reservoirs are suitable for protecting existing development, and they may be the only flood control measure that can protect development close to a watercourse. They are most efficient in deeper valleys or on smaller rivers where there is less water to store. Reservoirs might consist of man-made holes dug to hold the approximate amount of floodwaters, or even abandoned quarries. As with other structural projects, reservoirs:
 a. are expensive
 b. occupy a lot of land
 c. require periodic maintenance
 d. may fail to prevent damage from floods that exceed their design levels
 e. may eliminate the natural and beneficial functions of the floodplain.

4. **Channel Modifications** - Channel modifications include making a channel wider, deeper, smoother, or straighter. These techniques will result in more water being carried away, but, as with other techniques mentioned, it is important to ensure that the modifications do not create or increase a flooding problem downstream.

5. **Dredging**: Dredging is often cost-prohibitive because the dredged material must be disposed of in another location; the stream will usually fill back in with sediment. Dredging is usually undertaken only on larger rivers, and then only to maintain a navigation channel.

6. **Drainage Modifications**: These include man-made ditches and storm sewers that help drain areas where the surface drainage system is inadequate or where underground drainage ways may be safer or more attractive. These approaches are usually designed to carry the runoff from smaller, more frequent storms.
7. **Storm Sewers** - Mitigation techniques for storm sewers include installing new sewers, enlarging small pipes, street improvements, and preventing backflow. Because drainage ditches and storm sewers convey water faster to other locations, improvements are only recommended for small local problems where the receiving body of water can absorb the increased flows without increased flooding. In many developments, streets are used as part of the drainage system, to carry or hold water from larger, less frequent storms. The streets collect runoff and convey it to a receiving sewer, ditch, or stream. Allowing water to stand in the streets and then draining it slowly can be a more effective and less expensive measure than enlarging sewers and ditches.

F. Public Information

Public information activities are intended to advise property owners, potential property owners, and visitors about the particular hazards associated with a property, ways to protect people and property from these hazards, and the natural and beneficial functions of a floodplain.

1. **Map Information** - Flood maps developed by FEMA outline the boundaries of the flood hazard areas. These maps can be used by anyone interested in a particular property to determine if it is flood-prone. These maps are available from FEMA, the NH Homeland Security and Emergency Management (HSEM), the NH Office of Energy and Planning (OEP), or your regional planning commission.

2. **Outreach Projects** - Outreach projects are proactive; they give the public information even if they have not asked for it. Outreach projects are designed to encourage people to seek out more information and take steps to protect themselves and their properties. Examples of outreach activities include:

 a. Presentations at meetings of neighborhood groups
 b. Mass mailings or newsletters to all residents
 c. Notices directed to floodplain residents
 d. Displays in public buildings, malls, etc.
 e. Newspaper articles and special sections
 f. Radio and TV news releases and interview shows
 g. A local flood proofing video for cable TV programs and to loan to organizations
 h. A detailed property owner handbook tailored for local conditions. Research has shown that outreach programs work, although awareness is not enough. People need to know what they can do about the hazards, so projects should include information on protection measures. Research also shows that locally designed and run programs are much more effective than national advertising.

3. **Real Estate Disclosure** - Disclosure of information regarding flood-prone properties is important if potential buyers are to be in a position to mitigate damage. Federally regulated lending institutions are required to advise applicants that a property is in the floodplain. However, this requirement needs to be met only five days prior to closing, and by that time, the applicant is typically committed to the purchase. State laws and local real estate practice can help by making this information available to prospective buyers early in the process.

4. **Library** - Your local library can serve as a repository for pertinent information on flooding and flood protection. Some libraries also maintain their own public information campaigns, augmenting the activities of the various governmental agencies involved in flood mitigation.
5. **Technical Assistance** - Certain types of technical assistance are available from the NFIP Coordinator, FEMA, and the Natural Resources Conservation District. Community officials can also set up a service delivery program to provide one-on-one sessions with property owners.

An example of technical assistance is the *flood audit*, in which a specialist visits a property. Following the visit, the owner is provided with a written report detailing the past and potential flood depths and recommending alternative protection measures.

6. **Environmental Education** - Education can be a great mitigating tool if people can learn what not to do before damage occurs. The sooner the education begins the better. Environmental education programs for children can be taught in the schools, park and recreation departments, conservation associations, or youth organizations. An activity can be as involved as course curriculum development or as simple as an explanatory sign near a river.

Education programs do not have to be limited to children. Adults can benefit from knowledge of flooding and mitigation measures; decision makers, armed with this knowledge, can make a difference in their communities.

II. EARTHQUAKES

A. **Preventive**

1. Planning/zoning to keep critical facilities away from fault lines
2. Planning, zoning and building codes to avoid areas below steep slopes or soils subject to liquefaction
3. Building codes to prohibit loose masonry overhangs, etc.

B. **Property Protection**

1. Acquire and clear hazard areas
2. Retrofitting to add braces, remove overhangs
3. Apply Mylar to windows and glass surfaces to protect from shattering glass
4. Tie down major appliances, provide flexible utility connections
5. Earthquake insurance riders

C. **Emergency Services**

1. Earthquake response plans to account for secondary problems, such as fires and hazardous material spills

D. **Structural Projects**

1. Slope stabilization
III. DAM FAILURE

A. Preventive

1. Dam failure inundation maps
2. Planning/zoning/open space preservation to keep area clear
3. Building codes with flood elevation based on dam failure
4. Dam safety inspections
5. Draining the reservoir when conditions appear unsafe

B. Property Protection

1. Acquisition of buildings in the path of a dam breach flood
2. Flood insurance

C. Emergency Services

1. Dam condition monitoring
2. Warning and evacuation plans based on dam failure

D. Structural Projects

1. Dam improvements, spillway enlargements
2. Remove unsafe dams

IV. WILDFIRES

A. Preventive

1. Zoning districts to reflect fire risk zones
2. Planning and zoning to restrict development in areas near fire protection and water resources
3. Requiring new subdivisions to space buildings, provide firebreaks, on-site water storage, wide roads, multiple accesses
4. Building code standards for roof materials and spark arrestors
5. Maintenance programs to clear dead and dry brush, trees
6. Regulation on open fires

B. Property Protection

1. Retrofitting of roofs and adding spark arrestors
2. Landscaping to keep bushes and trees away from structures
3. Insurance rates based on distance from fire protection

C. Natural Resource Protection

1. Prohibit development in high-risk areas
D. Emergency Services

1. Fire Fighting

V. WINTER STORMS

A. Prevention

1. Building code standards for light frame construction, especially for wind-resistant roofs

B. Property Protection

1. Storm shutters and windows
2. Hurricane straps on roofs and overhangs
3. Seal outside and inside of storm windows and check seals in spring and fall
4. Family and/or company severe weather action plan & drills:
 a. include a NOAA Weather Radio
 b. designate a shelter area or location
 c. keep a disaster supply kit, including stored food and water
 d. keep snow removal equipment in good repair; have extra shovels, sand, rock, salt and gas
 e. know how to turn off water, gas, and electricity at home or work

C. Natural Resource Protection

1. Maintenance program for trimming trees and shrubs

D. Emergency Services

1. Early warning systems/NOAA Weather Radio
2. Evacuation plans
Appendix D: List of Contacts

NH Homeland Security & Emergency Management
Hazard Mitigation Section .. 271-2231
Federal Emergency Management Agency (Boston) 877-336-2734

NH Regional Planning Commissions:
Central NH Regional Planning Commission 226-6020
Nashua Regional Planning Commission 424-2240
North Country Council RPC .. 444-6303
Rockingham Planning Commission ... 778-0885
Southern New Hampshire Planning Commission 697-4664
Southwest Region Planning Commission 357-0557
Strafford Regional Planning Commission 742-2523
Upper Valley Lake Sunapee RPC .. 448-1680

NH Executive Department:
New Hampshire Office Energy & Planning 271-2155

NH Department of Cultural Affairs
Division of Historical Resources .. 271-3483

NH Department of Environmental Services
Air Resources ... 271-3503
Waste Management ... 271-1370
Water Resources ... 271-3406
Water Supply and Pollution Control ... 271-3434
Rivers Management and Protection Program............................ 271-8801
Bureau of Dams .. 271-3503

NH Fish and Game Department .. 271-3421

NH DRED.. 271-2411
Natural Heritage Inventory .. 271-3623
Division of Forests and Lands .. 271-2214
Division of Parks and Recreation .. 271-3556

NH Department of Transportation .. 271-3734

US Department of Commerce:
National Oceanic and Atmospheric Administration:
National Weather Service; Gray, Maine 207-688-3216

US Department of Interior:
US Fish and Wildlife Service ... 223-2541

US Geological Survey ... 225-4681

US Department of Agriculture:
Natural Resource Conservation Service 868-7581

New Hampshire State Police ... 846-3333

Additional Websites of Interest
Natural Hazards Research Center, U. of Colorado
http://www.colorado.edu/hazards/

National Emergency Management Association
http://nemaweb.org

NASA-Earth Observatory
http://earthobservatory.nasa.gov/NaturalHazards/category.php?cat_id=12

NASA Natural Disaster Reference
Reference of worldwide natural disasters
http://gcmd.nasa.gov/records/NASA-NDRD.html

National Weather Service
Weather Warnings, 60 Second Updates
http://nws.noaa.gov

FEMA, National Flood Insurance Program, Community Status Books
http://fema.gov/business/nfip/

Florida State & NWS University
Atlantic Hurricane Site
http://www.met.fsu.edu/orgs/explores/

National Lightning Safety Institute
List of Lightning Safety Publications
http://lightningsafety.com

NASA Optical Transient Detector
Space-based sensor of lightning strikes
http://www.gr.ssr.upm.es/~jambrina/rayso/thunder.msfc.nasa.gov/otd.html

LLNL Geologic & Atmospheric Hazards
Research Center, U. of Colorado
http://www.colorado.edu/hazards/

The Tornado Project Online
Recent tornado information & details
http://www.tornado-project.com/

National Severe Storms Laboratory
Information & tracking of severe storms
http://www.nssl.noaa.gov/
USDA Forest Service
Forest Fire & Land Management Information
http://www.fs.fed.us/fire
Appendix E: Technical and Financial Assistance for Multi-Hazard Mitigation

This section discusses the authorization and appropriation of funding for each of the HMA programs. Together, these programs provide significant opportunities to reduce or eliminate potential losses to State, territories, federally-recognized tribes, and local assets through hazard mitigation planning and project grant funding. Each HMA program was authorized by separate legislative action, and as such, each program differs slightly in scope and intent. More information about each of the HMA programs can be found on the FEMA HMA website at https://www.fema.gov/hazard-mitigation-assistance.

A. Hazard Mitigation Grant Program (HMGP)

HMGP is authorized by Section 404 of the Stafford Act, 42 U.S.C. 5170c. The key purpose of HMGP is to ensure that the opportunity to take critical mitigation measures to reduce the risk of loss of life and property from future disasters is not lost during the reconstruction process following a disaster.

HMGP funding is available, when authorized under a Presidential major disaster declaration, in the areas of the State requested by the Governor. Federally-recognized tribes may also submit a request for a Presidential major disaster declaration within their impacted areas (see http://www.fema.gov/media-library/assets/documents/85146). The amount of HMGP funding available to the Applicant is based on the estimated total Federal assistance, subject to the sliding scale formula outlined in Title 44 of the Code of Federal Regulations (CFR) Section 206.432(b) that FEMA provides for disaster recovery under Presidential major disaster declarations. The formula provides for up to 15 percent of the first $2 billion of estimated aggregate amounts of disaster assistance, up to 10 percent for amounts between $2 billion and $10 billion, and up to 7.5 percent for amounts between $10 billion and $35.333 billion. For States with enhanced plans, the eligible assistance is up to 20 percent for estimated aggregate amounts of disaster assistance not to exceed $35.333 billion.

The Period of Performance (POP) for HMGP begins with the opening of the application period and ends no later than 36 months from the close of the application period.

HMGP assists in implementing long-term hazard mitigation measures following Presidential disaster declarations. Funding is available to implement projects in accordance with State, Tribal, and local priorities.

B. Pre-Disaster Mitigation

PDM is authorized by the Stafford Act, 42 U.S.C. 5133. PDM is designed to assist States, territories, federally-recognized tribes, and local communities to implement a sustained predisaster natural hazard mitigation program to reduce overall risk to the population and structures from future hazard events, while also reducing reliance on Federal funding in future disasters. Congressional appropriations provide the funding for PDM. Part I. The total amount of funds distributed for PDM is determined once the appropriation is provided for a given fiscal year. It can be used for mitigation projects and planning activities.
The POP for PDM begins with the opening of the application period and ends no later than 36 months from the date of subapplication selection.

C. Flood Mitigation Assistance

The FMA program is authorized by Section 1366 of the National Flood Insurance Act of 1968, as amended with the goal of reducing or eliminating claims under the National Flood Insurance Program (NFIP). FMA provides funding to States, Territories, federally-recognized tribes and local communities for projects that reduce or eliminate long-term risk of flood damage to structures insured under the NFIP. FMA funding is available for flood hazard mitigation projects, plan development and management costs. Funding is appropriated by Congress annually.

Please refer to the current program guidance for detail information on the Flood Mitigation Program: https://www.fema.gov/flood-mitigation-assistance-grant-program
Appendix F: Maps

- Emergency Response Facilities
- Non-Emergency Response Facilities
- Facilities and Populations to Protect
- Potential Resources
- Water Resources
Emergency Response Facilities Legend

Name of Facility

Police Station (EOC)
Middle Elementary School (Back EOC)
Central Fire Station
City Hall
Public Works Facility
American Ambulance
Emergency Fuel
Fairpoint Switching Station
Cell Towers
Bridges
Evacuation Routes

Past & Potential Hazards

Past & Potential Flooding
Dam Inundation Zone
FEMA Floodplain
100-yr Floodplain
500-yr Floodplain

DATA SOURCES

Base features are from USGS 1:24,000 scale Digital Line Graphs, as archived in the GRANIT database. All base features distributed by Complex Systems Research Center, Durham, NH. Digital data in NH GRANIT represent the efforts of the contributing agencies to record information from the cited source materials. Complex Systems Research Center, under contract to the NH Office of State Planning, and in consultation with cooperating agencies, maintains a continuing program to identify and correct errors in these data. OSP, CSRC and the cooperating agencies make no claim as to the validity or reliability or to any implied uses of these data.